Have a personal or library account? Click to login
On the unrestricted virtual singular braid Cover

References

  1. E. Artin. Theorie der Zpfe. Abhandlungen aus dem Mathematischen. Abh. Math. Sem. Univ. Hamburg 4 (1925), 47–72.
  2. J. C. Baez. Link invariants of finite type and perturbation theory. Lett. Math. Phys. 26 (1) (1992), 43–51.
  3. V. G Bardakov, P. Bellingeri, C. Damiani. Unrestricted virtual braids, fused links and other quotients of virtual braid groups. J. Knot Theory Ramifications. 24 (2015), 1550063 23 pp.
  4. J. S. Birman. New points of view in knot theory. Bull. Amer. Math. Soc. (N.S.) 28 (2) (1993) 253–287.
  5. C. Caprau, A. de la Pena, S. McGahan. Virtual singular braids and links. Manuscripta Mathematica 151 (1) (2016), 147–175.
  6. C. Caprau, A. Yeung. Algebraic structures among virtual singular braids (2022), preprint arXiv: 2201.09187.
  7. C. Caprau, S. Zepeda. On the virtual singular braid monoid (2019), preprint arXiv: 1710.05416.
  8. S. Kamada. Braid presentation of virtual knots and welded knots. Osaka J. Math. 44 (2) (2007), 441–458.
  9. L. H. Kauffman, S. Lambropoulou. Virtual braids. Fund. Math. 184 (2004), 159–186.
  10. L. H. Kauffman, S. Lambropoulou. A categorical model for the virtual braid group. J. of Knot Theory Ramifications 21 (13) (2012), 1240008 48 pages.
  11. V. Lin. Braids and Permutations (2004), preprint arXiv: 0404528.
  12. S. Moran. The mathematical theory of knots and braids. Amsterdam: North-Holland Mathematics Studies, vol. 82, Elsevier, (1983).
  13. O. Ocampo. On Virtual singular braid groups (2022), preprint arXiv: 2207.13885v1.
  14. T. Nasybullov. The classification of fused links. J. Knot Theory Ramifications 25 (21) (2016), 1650076.
  15. F. Panaite, M. Staic. A quotient of the braid group related to pseudosymmetric braided categories. Pacific J. Math. 144 (2010), 155–167.
  16. L. Paris. Braid groups and Artin groups. In: Papadopoulos A (editor), Handbook of Teichmller Theory, Volume II. Zrich: European Mathematical Society Publishing House, (2009), pp. 389–451.
  17. A. I. Suciu, He Wang. Pure virtual braids, resonance, and formality. Mathematische Zeitschrift 286 (2017), 1495–1524.
DOI: https://doi.org/10.2478/auom-2024-0010 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 183 - 200
Submitted on: Jan 21, 2023
Accepted on: May 15, 2023
Published on: May 27, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Panagiote Ligouras, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.