Have a personal or library account? Click to login
Non-Archimedean stabilities of multiplicative inverse µ-functional inequalities Cover

Non-Archimedean stabilities of multiplicative inverse µ-functional inequalities

Open Access
|May 2024

References

  1. J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.
  3. R. Balasubramanian, Functional inequalities for the quotients of hypergeometric functions, J. Math. Anal. Appl. 218 (1998), 256–268.
  4. G. Bettencourta and S. Mendes, On the stability of a quadratic functional equation over non-Archimedean spaces, Filomat, 35 (8) (2021), 2693–2704.
  5. M. Duerinckx and A. Gloria, Multiscale functional inequalities in probability: Concentration properties, ALEA, Lat. Am. J. Probab. Math. Stat. 17 (2020), 133–157.
  6. A. Ebadian, S. Zolfaghari, S. Ostadbashi and C. Park, Approximation on the reciprocal functional equation in several variables in matrix non-Archimedean random normed spaces, Adv. Difference Equ. 2015 (2015), Article ID 314, 13 pages.
  7. W. Fechner, Stability of a functional inequality associated with the Jordan-Von Neumann functional equation, Aequationes Math. 71 (2006), 149–161.
  8. P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapppings, J. Math. Anal. Appl. 184 (1994), 431–436.
  9. M. B. Ghaemi, H. Majani and M.E. Gordji, General system of cubic functional equations in nonArchimedean spaces, Tamsui Oxford J. Inf. Math. Sci. 28(4) (2012) 407–423.
  10. A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303–309.
  11. A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707–810.
  12. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
  13. J. L. W. V. Jensen, Sur les fonctions convexes et les inegalities entre les valeurs myennes, Acta Math. 30 (1906), 179–193.
  14. H. Kawabi, Functional inequalities and an application for parabolic stochastic partial differential equations containing rotation, Bull. Sci. Math. 128 (2004) 687–725.
  15. M.S. Moslehian and G. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.–TMA 69 (2008), 3405–3408.
  16. C. Park, Quadratic ρ-functional inequalities and equations, J. Nonlinear Anal. Appl. 2014 (2014) 1–9.
  17. C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17–26.
  18. C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9(2) (2015), 397–407.
  19. C. Park, Additve ρ-functional inequalities and equations, J. Math. Inequal. 9 (1) (2015), 17–26.
  20. C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
  21. C. Park, J.R. Lee and D.Y. Shin, Cubic ρ-functional inequality and quartic ρ-functional inequality, J. Comp. Anal. Appl. 21 (2) (2016), 355–362.
  22. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
  23. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191–200.
  24. K. Ravi and B. V. Senthil Kumar, Ulam-Gavruta-Rassias stability of Rassias reciprocal functional equation, Global J. Appl. Math. Sci. 3 (1–2) (2010), 57–79.
  25. K. Ravi and B.V. Senthil Kumar, Stability and geometrical interpretation of reciprocal functional equation, Asian J. Current Engg. Maths, 1(5) (2012), 300–304.
  26. M. L. Scutaru, S. Vlase, M. Marin and A. Modrea, New analytical method based on dynamic response of planar mechanical elastic systems, Boundary Value Problems, 2020 (104), (2020), 1–16.
  27. B.V. Senthil Kumar and A. Bodaghi, Approximation of the Jensen type rational functional equation by a fixed point technique, Boletim da Sociedade Paranaense de Matematica, 38(3) (2020), 125–132.
  28. B. V. Senthil Kumar and H. Dutta, Non-Archimedean stability of a generalized reciprocal-quadratic functional equation in several variables by direct and fixed point methods, Filomat, 32 (9) (2018), 3199–3209.
  29. W. Suriyacharoen and W. Sintunavarat, On additive ρ-functional equations arising from Cauchy-Jensen functional equations and their stability, Appl. Math. Inf. Sci. 16 (2) (2022), 277–285.
  30. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, Inc. New York, 1960.
  31. C. L. Wang, A functional inequality and its applications, J. Math. Anal. Appl. 166 (1992), 247–262.
  32. Z. Wang, C. Park and D.Y. Shin, Additive ρ-functional inequalities in non-Archimedean 2-normed spaces, AIMS Mathematics, 6 (2) (2020), 1905–1919.
DOI: https://doi.org/10.2478/auom-2024-0008 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 141 - 154
Submitted on: Feb 1, 2023
Accepted on: Apr 20, 2023
Published on: May 27, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Hemen Dutta, B. V. Senthil Kumar, S. Suresh, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.