Have a personal or library account? Click to login
Stochastic ordering of discrete multivariate distributions. Algorithm in C++ with applications in the comparison of number of claims and extremes order statistics Cover

Stochastic ordering of discrete multivariate distributions. Algorithm in C++ with applications in the comparison of number of claims and extremes order statistics

Open Access
|May 2024

References

  1. Baca, A., Vernic, R. (2022). On the three-spliced Exponential-Lognormal-Pareto distribution. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa, Seria Matematica, 30(3), 21–35.
  2. Bancescu I. (2018). Some classes of statistical distributions. Properties and Applications. nalele ştiinţifice ale Universităţii” Ovidius” Constanţa, Seria Matematica, 26(1), 43–68, DOI: 10.2478/auom-2018-0002.
  3. Catana, L. I. (2022). Stochastic orders of log-epsilon-skew-normal distributions. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa, Seria Matematica, 30(1), 109–128.
  4. Catana, L. I. (2021). Stochastic orders for a multivariate Pareto distribution. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa, Seria Matematica, 29(1), 53–69.
  5. Catana, L. I. (2019). Some Conditions for Stochastic Order of Multivariate Distributions. International Journal of Risk Theory, 9(1), 30–40.
  6. S. Das, S. Kayal (2021). Ordering results between the largest claims arising from two general heterogeneous portfolios. arXiv preprint arXiv:2104.08605.
  7. S. Das, S. Kayal, N. Balakrishnan (2021). Orderings of the smallest claim amounts from exponentiated location-scale models. Methodology and Computing in Applied Probability, 23(3), 971–999.
  8. Nadarajah S., Jiang X., Chu J. (2017). Comparisons of smallest order statistics from Pareto distributions with different scale and shape parameters. Ann Oper Res, Springer.
  9. H. Nadeb, H. Torabi, A. Dolati (2018). Stochastic comparisons of the largest claim amounts from two sets of interdependent heterogeneous portfolios. arXiv preprint arXiv:1812.08343.
  10. H. Nadeb, H. Torabi, A. Dolati (2020). Stochastic comparisons between the extreme claim amounts from two heterogeneous portfolios in the case of transmuted-G model. North American Actuarial Journal, 24(3), 475–487.
  11. Vernic, R. (2005). On the multivariate Skew-Normal distribution and its scale mixtures. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa, Seria Matematica, 13(2), 83–96.
  12. Raducan, A. M., Radulescu, C. Z., Radulescu, M., Zbaganu, G. (2022). On the Probability of Finding Extremes in a Random Set. Mathematics, 10(10), 1623.
  13. Radulescu, M., Radulescu, C. Z., Zbaganu, G. (2021). Conditions for the Existence of Absolutely Optimal Portfolios. Mathematics, 9(17), 2032.
  14. Robe-Voinea, E. G., Vernic, R. (2016). Another approach to the evaluation of a certain multivariate compound distribution. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa, Seria Matematica, 24(3), 339–349.
  15. Shaked M., Shanthikumar J. G. (2007). Stochastic orders. New York: Springer.
DOI: https://doi.org/10.2478/auom-2024-0007 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 127 - 140
Submitted on: Dec 9, 2022
Accepted on: Mar 8, 2023
Published on: May 27, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Luigi-Ionut Catana, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.