References
- M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM Journal on Scientific Computing, 19, 968–994, 1998.
- M. Benzi and M. Tuma. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 30, 305–340, 1999.
- A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, PA, USA, 1979.
- M. Bollhöfer and Y. Saad. On the relations between ILUs and factored approximate inverses. SIAM J. Matrix Anal. Appl., 24(1), 219–237, 2002.
- R. Bru, C. Corral, M. I. Gimenez and J. Mas. Classes of general H–matrices. Linear Algebra and its Applications. 429(10), 2358–2366, 2008.
- R. Bru, J. Cerdán, J. Marín and J. Mas. Preconditioning sparse nonsymmetric linear systems with the Sherman–Morrison formula. SIAM Journal on Scientific Computing, 25, 701–715, 2003.
- R. Bru, J. Marín, J. Mas and M. Tůma. Balanced incomplete factorization. SIAM J. Sci. Comput., 30, 2302–2318, 2008.
- R. Bru, J. Marín, J. Mas and M. Tůma. Improved balanced incomplete factorization. SIAM J. Matrix Anal. Appl., 31, 2431–2452, 2010.
- R. Byrd, J. Nocedal and R. Schnabel. Representations of Quasi-Newton matrices and their use in limited memory methods. Mathematical Programming, 63(13), 129–156, 1994.
- J. Cerdán, T. Faraj, N. Malla, J. Marín and J. Mas. Block approximate inverse preconditioners for sparse nonsymmetric linear systems. Electron. Trans. Numer. Anal., 37, 23–40, 2010.
- T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages.
- I. S. Du, R.G. Grimes and J. G. Lewis. Users’ Guide for the Harwell-Boeing Sparse Matrix Collection. Tech. Report RAL 92–886, Rutherford Appleton Laboratory, Chilton, England, 1992.
- I. Du, M. Heroux, R. Pozo. An Overview of the Sparse Basic Linear Algebra Subprograms: The New Standard from the BLAS Technical Forum. ACM Trans. Math. Softw. 28, 2, 239–267, 2002.
- W. W. Hager. Updating the inverse of matrix. SIAM Rev., 31(2), 221–239, 1989.
- A. Rafiei, M. Bollhöfer and F. Benkhaldoun. A block version of left-looking AINV preconditioner with one by one or two by two block pivots. Applied Mathematics and Computation, 350, 36–385, 2019.
- J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist., 21, 124–127, 1950.
- C. N. van Duin. Scalable parallel preconditioning with the sparse approximate inverse of triangular matrices. SIAM J. Matrix Anal. Appl. 20(4), 987–1006, 1999. MR1699790.