Have a personal or library account? Click to login
An inverse LU preconditioner based on the Sherman–Morrison formula Cover
By: R. Bru,  J. Cerdán,  J. Marín and  J. Mas  
Open Access
|May 2024

References

  1. M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM Journal on Scientific Computing, 19, 968–994, 1998.
  2. M. Benzi and M. Tuma. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 30, 305–340, 1999.
  3. A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, PA, USA, 1979.
  4. M. Bollhöfer and Y. Saad. On the relations between ILUs and factored approximate inverses. SIAM J. Matrix Anal. Appl., 24(1), 219–237, 2002.
  5. R. Bru, C. Corral, M. I. Gimenez and J. Mas. Classes of general H–matrices. Linear Algebra and its Applications. 429(10), 2358–2366, 2008.
  6. R. Bru, J. Cerdán, J. Marín and J. Mas. Preconditioning sparse nonsymmetric linear systems with the Sherman–Morrison formula. SIAM Journal on Scientific Computing, 25, 701–715, 2003.
  7. R. Bru, J. Marín, J. Mas and M. Tůma. Balanced incomplete factorization. SIAM J. Sci. Comput., 30, 2302–2318, 2008.
  8. R. Bru, J. Marín, J. Mas and M. Tůma. Improved balanced incomplete factorization. SIAM J. Matrix Anal. Appl., 31, 2431–2452, 2010.
  9. R. Byrd, J. Nocedal and R. Schnabel. Representations of Quasi-Newton matrices and their use in limited memory methods. Mathematical Programming, 63(13), 129–156, 1994.
  10. J. Cerdán, T. Faraj, N. Malla, J. Marín and J. Mas. Block approximate inverse preconditioners for sparse nonsymmetric linear systems. Electron. Trans. Numer. Anal., 37, 23–40, 2010.
  11. T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages.
  12. I. S. Du, R.G. Grimes and J. G. Lewis. Users’ Guide for the Harwell-Boeing Sparse Matrix Collection. Tech. Report RAL 92–886, Rutherford Appleton Laboratory, Chilton, England, 1992.
  13. I. Du, M. Heroux, R. Pozo. An Overview of the Sparse Basic Linear Algebra Subprograms: The New Standard from the BLAS Technical Forum. ACM Trans. Math. Softw. 28, 2, 239–267, 2002.
  14. W. W. Hager. Updating the inverse of matrix. SIAM Rev., 31(2), 221–239, 1989.
  15. A. Rafiei, M. Bollhöfer and F. Benkhaldoun. A block version of left-looking AINV preconditioner with one by one or two by two block pivots. Applied Mathematics and Computation, 350, 36–385, 2019.
  16. J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist., 21, 124–127, 1950.
  17. C. N. van Duin. Scalable parallel preconditioning with the sparse approximate inverse of triangular matrices. SIAM J. Matrix Anal. Appl. 20(4), 987–1006, 1999. MR1699790.
DOI: https://doi.org/10.2478/auom-2024-0006 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 105 - 126
Submitted on: Dec 1, 2022
Accepted on: Apr 20, 2023
Published on: May 27, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 R. Bru, J. Cerdán, J. Marín, J. Mas, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.