References
- S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Developments in Mathematics, 39. Springer, Cham, 2015.
- S. Abbas, M. Benchohra, G. M. N’Guérékata, Instantaneous and noninstantaneous impulsive integrodi erential equations in Banach spaces, J. Anal. Appl. 38 (2) (2020), 143–156.
- R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation. Math. Meth. Appl. Sci. (2020), 112.
- R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 115 (2021), 115155.
- R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20 (2021), 313–333.
- H. Afshari and E. Karapinar, A solution of the fractional differential equations in the setting of b-metric space. Carpathian Math. Publ. 13 (2021), 764–774. https://doi.org/10.15330/cmp.13.3.764–774
- H. Afshari and E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Difference Equ. 2020 (2020), 616. https://doi.org/10.1186/s13662-020-03076-z
- R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differntial, Difference and Integral Equation, Academic Publishers, Dordrecht, 2001.
- R. P. Agarwal and D. O’Regan, Infinite interval problems modeling phenomena which arise in the theory of plasma and electrical potential theory, Stud. Appl. Math. 111 (2003), 339–358.
- D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect: Theory and Applications, Ellis Horwood, Chichister, 1989.
- J. Banaś, K. Goebel: Measure of Noncompactness in Banach Spaces. in: Lecture Notes in Pure and Applied Math, 60, Marcel Dekker, New York, 1980.
- J. Banaś, Measures of noncompactness in the space of continuous tempered functions, Demonstr. Math. 14 (1981), 127–133.
- A. Belleni-Morante, An integrodifferential equation arising from the theory of heat conduction in rigid material with memory, Boll. Un. Mat. Ital. 15 (1978), 470–482.
- M. Benchohra, F. Bouazzaoui, E. Karapinar and A. Salim, Controllability of second order functional random differential equations with delay. Math. 10 (2022), 16 pp. https://doi.org/10.3390/math10071120
- M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive Differential Equations and inclusions, Hindawi Publishing Corporation, New York, 2006.
- M. Benchohra, N. Rezoug, Existence and Attractivity of Solutions of Semilinear Volterra Type Integro-Differential Evolution Equations, Surv. Math. Appl. 13 (2018), 215–235.
- N. Benkhettou, K. Aissani, A. Salim, M. Benchohra and C. Tunc, Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim. 6 (2022), 79–94.
- J. Blot, C. Buse, P. Cieutat, Local attractivity in nonautonomous semi-linear evolution equations. Nonauton. Dyn. Syst. 1 (2014), 72–82.
- L. Byszewski, Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems, Nonl. Anal. 33 (1998), 413–426.
- L. Byszewski, Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem. Appl. Math. Stoch. Anal. 12 (1999), 91–97.
- L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40 (1990), 11–19.
- W. Desch, R. C. Grimmer and W. Schappacher, Some considerations for linear integrodiffferential equations, J. Math. Anal. Appl. 104 (1984), 219–234.
- M. A. Diop, K. Ezzinbi, M. P. Ly, Nonlocal problems for integrodifferential equation via resolvent operators and optimal control, Discuss. Math. Differ. Incl. Control Optim. 42 (2022), 5–25.
- B.C. Dhage, V. Lakshmikantham, On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal. 72 (2010) 2219–2227
- S. Dudek and L. Olszowy, Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter. J. Funct. Spaces 2015, Art. ID 471–235, 9 pp.
- J. Dugundji, A. Granas, Fixed Point Theory, Springer-Verlag, New York, 2003.
- R. C. Grimmer, Resolvent opeators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273 (1982), 333–349.
- R. C. Grimmer and A. J. Pritchard, Analytic resolvent operators for integral equations in a Banach space, J. Differential Equations 50 (1983), 234–259.
- X. Hao, L. Liu, Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces . Math. Methods Appl. Sci. 40 (13) (2017), 4832–4841.
- A. Heris, A. Salim, M. Benchohra and E. Karapinar, Fractional partial random differential equations with infinite delay. Results in Physics. (2022). https://doi.org/10.1016/j.rinp.2022.105557
- E. Hernàndez, D. O’Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1641–1649.
- A. Jawahdou, Mild solutions of functional semilinear evolution Volterra integrodifferential equations on an unbounded interval, Nonlinear Anal. 74 (2011), 7325–7332
- N. N. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics, Izd. Acad. Sci. Ukr. SSR, Kiev, 1937.
- R. R. Kumar, Nonlocal Cauchy problem for analytic resolvent operator integrodifferential equations in Banach spaces, Appl. Math. Comput. 204 (2008), 352–362.
- R. R. Kumar, Regularity of solutions of evolution integrodifferential equations with deviating argument, Appl. Math. Comput. 217 (2011), 9111–9121.
- V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6, World Scientific, New Jersey, 1989.
- J. Mikusiéski, The Bochner Integral, Birkhuser, Basel, 1978.
- L. Olszowy and S. Wedrychowicz, Mild solutions of semilinear evolution equation on an unbounded interval and their applications. Nonlinear Anal. 72 (2010), no. 3–4, 2119–2126.
- A. Salim, S. Abbas, M. Benchohra and E. Karapinar, Global stability results for Volterra-Hadamard random partial fractional integral equations. Rend. Circ. Mat. Palermo (2). (2022), 1–13. https://doi.org/10.1007/s12215-022-00770-7
- J. M. A. Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Adv. Oper. Theory. 99, Birkhauser, Basel, Boston, Berlin, 1997.
- K. Yosida, Functional Analysis 6 Springer-Verlag, Berlin, 1980.