Have a personal or library account? Click to login
On an eigenvalue problem associated with the (p, q) − Laplacian Cover

References

  1. R. Adams, J. Fournier, Sobolev Spaces(second ed.), Pure Appl. Math., 140, Academic Press, New York London, 2003.
  2. L. Barbu, G. Moroşanu, Eigenvalues of the negative (p, q)−Laplacian under a Steklov-like boundary condition, Complex Var. Elliptic, 644(2019), 685700.
  3. L. Barbu, G. Moroşanu, Full description of the eigenvalue set of the (p, q)-Laplacian with a Steklov-like boundary condition, J. Differential Equations, 290(2021), 1–16.
  4. L. Barbu, G. Moroşanu, On a Steklov eigenvalue problem associated with the (p, q)−Laplacian, Carpathian J. Math., 37(2021), 161–171.
  5. L. Barbu, G. Moroşanu, Full description of the spectrum of a Steklov-like eigenvalue problem involving the (p, q)−Laplacian, Ann. Acad. Rom. Sci, Ser. Math. Appl. (in press).
  6. L. Barbu, G. Moroşanu, On the eigenvalue set of the (p, q)−Laplacian with a Neumann-Steklov boundary condition, Differential Integral Equations. (in press).
  7. V. Benci, D. Fortunato, L. Pisani, Solitons like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys., 10(1998), 315344.
  8. V. Bobkov, M. Tanaka, On the Fredholm-type theorems and sign properties of solutions for (p, q)− Laplace equations with two parameters, Ann. Mat. Pura Appl., 198(2019), 16511673.
  9. D. Bonheure, F. Colasuonno, J. Fldes, On the Born-Infeld equation for electrostatic fields with a superposition of point charges, Ann. Mat. Pura Appl., 198(3) (2019), 749–772.
  10. H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
  11. E. Casas, L.A. Fernández, A Green’s formula for quasilinear elliptic operators, J. Math. Anal. Appl., 142(1989), 62–73.
  12. L. Cherfils, Y. Il’yasov, On the stationary solutions of generalized reaction diffusion equations with p&q−Laplacian, Commun. Pure Appl. Anal., 4(2005), 9–22.
  13. Z. Denkowski, S. Migórski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Springer, New York, 2003.
  14. G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5(1964), 1252–1254.
  15. L.F.O. Faria, O.H. Miyagaki, D. Motreanu, Comparison and positive solutions for problems with (p, q)−Laplacian and convection term, Proc. Edinb. Math. Soc., 57 (2) (2014), 687–698.
  16. L. Gasiński, N.S. Papageorgiou, Exercises in Analysis. Part 2: Nonlinear Analysis, Springer International Publishing, Switzerland, 2016.
  17. T. Gyulov, G. Moroşanu, Eigenvalues of −(Δp + Δq) under a Robin-like boundary condition, Ann. Acad. Rom. Sci. Ser. Math. Appl., 8(2016), 114–131.
  18. D. Mugnai, N.S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa, Cl. Sci., (5)XI(2012), 729788.
  19. N.S. Papageorgiou, C. Vetro, F. Vetro, Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential, J. Differential Equations, 268(2020), 41024118.
  20. M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1996.
  21. V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50(1986), 675710; English translation in Math. USSR-Izv., 29(1987), 3366.
DOI: https://doi.org/10.2478/auom-2024-0003 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 45 - 64
Submitted on: Feb 14, 2023
Accepted on: May 31, 2023
Published on: May 27, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Luminiţa Barbu, Andreea Burlacu, Gheorghe Moroşanu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.