References
- D. Adak, A. Majumder, N. Bairagi, Mathematical perspective of Covid-19 pandemic: Disease extinction criteria in deterministic and stochastic models, Chaos Solitons Fractals, vol. 142, article 110381, 2021.
- D. K. Bagal, A. Rath, A. Barua, D. Patnaik, Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods, Chaos, Solitons & Fractals, vol. 140, article 110154, 2020.
- S. B. Bastos, D. O. Cajueiro, Modeling and forecasting the COVID-19 pandemic in Brazil, 2020, https://arxiv.org/abs/2003.14288.
- S. Bentout, A. Chekroun, T. Kuniya, Parameter estimation and prediction for corona virus disease outbreak 2019 (COVID-19) in Algeria, AIMS Public Health. 2020;7:306318.
- F. Brauer, C. Castillo-Chavez and Z. Feng, Mathematical Models in Epidemiology, 1st ed., Springer-Verlag New York, (2019).
- C. C. Chow, J. C. Chang, R. C. Gerkin, S. Vattikuti, Global prediction of unreported SARS-CoV2 infection from observed COVID-19 cases, medRxiv [Preprint]. 2020 May 5:2020.04.29.20083485. doi: 10.1101/2020.04.29.20083485. PMID: 32510525; PMCID: PMC7239078.
- Coronavirus disease 2019 (COVID-19). Available online at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on July 15, 2022).
- E. Demirci, A Novel Mathematical Model of the Dynamics of COVID-19, Gazi University Journal of Science, doi:10.35378/gujs.1096827
- A. Hamadeh, Z. Feng, J. Niergarth, W. W. Wong, Estimation of COVID-19 Period Prevalence and the Undiagnosed Population in Canadian Provinces: Model-Based Analysis, JMIR Public Health Surveill 2021;7(9):e26409, doi: 10.2196/26409
- A. Huppert, G. Katriel, Mathematical modelling and prediction in infectious disease epidemiology, Clin Microbiol Infect, 19 (11) (2013), pp. 999-1005
- B. Ivorra, M. R. Ferrandez, M. Vela-Perez, A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Communications in Nonlinear Science and Numerical Simulation, 88: 105303, 2020.
- H. Kalish, C. Klumpp-Thomas, S. Hunsberger, S., et al., Undiagnosed SARS-CoV-2 seropositivity during the first 6 months of the COVID-19 pandemic in the United States, Sci Transl Med, 13 (2021), p. eabh3826. doi:10.1126/scitranslmed.abh3826
- R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, vol. 368, no. 6490, pp. 489-493, Mar. 2020.
- Z. Liu, P. Magal, O. Seydi, G. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions, Biology, vol. 9, no. 3, p. 50, 2020.
- L. Masandawa, S. S. Mirau, I. S. Mbalawata, Mathematical modeling of COVID-19 transmission dynamics between healthcare workers and community, Results Phys. 2021 Oct;29:104731. doi: 10.1016/j.rinp.2021.104731. Epub 2021 Sep 6. PMID: 34513578; PMCID: PMC8420379.
- M. Martcheva, An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, vol. 61, Springer, New York, 2010.
- A. H. A. Mehra, M. Shafieirad, Z. Abbasi, I. Zamani, Parameter Estimation and Prediction of COVID-19 Epidemic Turning Point and Ending Time of a Case Study on SIR/SQAIR Epidemic Models, Computational and Mathematical Methods in Medicine, Volume 2020, Article ID 1465923, 13 pages
- K. G. Mekonen, T. G. Habtemicheal, S. F. Balcha, Modeling the effect of contaminated objectsfor the transmission dynamics of COVID-19 pandemic with self-protection behavior changes, Results Appl Math 9: 100134, 2021, https://doi.org/10.1016/j.rinam.2020.100134
- D. Mooney, R. Swift, A Course in Mathematical Modeling, The Mathematical Association of America, 1999.
- D. S. Moore, W. I. Notz, M.A. Flinger, The basic practice of statistics (6th ed.), New York, NY: W. H. Freeman and Company, (2013), Page (138).
- R. Nistal, M. De la Sen, J. Gabirond, S. Alonso-Quesada, A. J. Garrido, I. Garrido, A Study on COVID-19 Incidence in Europe through Two SEIR Epidemic Models Which Consider Mixed Contagions from Asymptomatic and Symptomatic Individuals, Applied Sciences, 11: 6266, 10.3390/app11146266, (2021).
- A. Olivares, E. Sta etti, Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy, Chaos Solitons Fractals 2021;110895.
- T. A. Perkins, S.M. Cavany, S. M. Moore, R. J. Oidtman, A. Lerch, M. Poterek, Estimating unobserved SARS-CoV-2 infections in the United States. Proc Natl Acad Sci U S A, 2020, Sep 8;117(36):22597-22602. doi: 10.1073/pnas.2005476117
- P. O. Neto, D. M. Kennedy, J. C. Reis, Y. Wang, A. C. B. Brizzi, G. J. Zambrano, J. M. de Souza, W. Pedroso, R. C. de Mello Pedreiro, B. de Matos Brizzi, E. O. Abinader, R. A. Zngaro, Mathematical model of COVID-19 intervention scenarios for So Paulo-Brazil, Nat Commun. 2021 Jan 18;12(1):418. doi: 10.1038/s41467-020-20687-y. PMID: 33462211; PMCID: PMC7814036.
- P. Riyapan, S. E. Shuaib, A. Intarasit, Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand, Computational and Mathematical Methods in Medicine, 2021. https://doi.org/10.1155/2021/6664483
- WHO Detailed Surveillance Data Dashboard. Available online at: https://app.powerbi.com/view?r=eyJrIjoiYWRiZWVkNWUtNmM0Ni00MDAwLTljYWMtN2EwNTM3YjQzYmRmIiwidCI6ImY2MTBjMGI3LWJkMjQtNGIzOS04MTBiLTNkYzI4MGFmYjU5MCIsImMiOjh9 (accessed on February 14,2023).
- Y. Wu, L. Kang, Z. Guo, J. Liu, M. Liu, W. Liang, Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis, JAMA Netw Open. 2022; 5(8) :e2228008. doi:10.1001/jamanetworkopen.2022.28008