Have a personal or library account? Click to login
Similarity relations and exponential of dual-generalized complex matrices Cover
Open Access
|Oct 2023

References

  1. A.A. Harkin, and J.B. Harkin, Geometry of generalized complex numbers, Mathematics Magazine, 77(2):118-129, 2004.
  2. A. Cohen, and M. Shoham, Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory, 125:101-110, 2018.
  3. D. De Falco, E. Pennestrì, and F.E. Udwadia, On generalized inverses of dual matrices, Mech. Mach. Theory., 123:89-106, 2018.
  4. D.S. Bernstein, Orthogonal matrices and the matrix exponential, SIAM Rev., 32(4):673, 1990.
  5. D.S. Bernstein, and W. So, Some explicit formulas for the matrix exponential, IEEE Trans. Automat. Control I, 38(8):1228-1232, 1993.
  6. F.E. Udwadia, E. Pennestrì, and D. De Falco, Do all dual matrices have dual MoorePenrose generalized inverses? Mech. Mach. Theory, 151:103878, 2020.
  7. F. Messelmi, Dual-complex numbers and their holomorphic functions, hal-01114178, 2015.
  8. E. Pennestrì, and R. Stefanelli, Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(3):323-344, 2007.
  9. E. Pennestrì, and P.P. Valentini, Linear dual algebra algorithms and their application to kinematics, Multibody Dyn. Computat. Methods Appl. Sci., 12:207229, 2009.
  10. E. Study, Geometrie der dynamen: Die zusammensetzung von kräften und verwandte gegenstände der geometrie bearb, Leipzig, B.G. Teubner, 1903.
  11. F. Messelmi, Generalized numbers and their holomorphic functions, Int. J. Open Problems Complex Analysis, 7(1), 2015.
  12. F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251:21-57, 1997.
  13. G.R. Pennock, and A.T. Yang, Application of dual-number matrices to the inverse kinematics problem of robot manipulators, J. Mech., Trans., and Automation., 107(2):201-208, 1985.
  14. G. Sobczyk, The hyperbolic number plane, College Math. J., 26(4):268-280, 1995.
  15. H. Liitkepohl, Handbook of matrices, John Wiley and Sons Ltd., England, 1996.
  16. H.H. Cheng, and S. Thompson, Dual polynomials and complex dual numbers for analysis of spatial mechanisms, Proc. of ASME 24th Biennial Mechanisms Conference, Irvine, CA, 19-22 August 1996.
  17. H.H. Cheng, and S. Thompson, Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers, ASME. J. Mech. Des., 121(2):200-205, 1999.
  18. H.H. Kösal, On commutative quaternion matrices, Ph.D. Thesis. Sakarya: Sakarya University Graduate School of Natural and Applied Sciences; 2016, ID:434046.
  19. H.H. Kösal, M. Akyiğit, and M. Tosun, On the consimilarity of split quaternions and split quaternion matrices, Analele Universitatii “Ovidius” Constanta-Seria Matematica, 24(3):189-207, 2016.
  20. I.E. Leonard, The matrix exponential, SIAM review, 38(3):507-512, 1996.
  21. I. Kantor, and A. Solodovnikov, Hypercomplex numbers, Springer-Verlag, New York, 1989.
  22. I.M. Yaglom, Complex numbers in geometry, Academic Press, New York, 1968.
  23. I.M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, NewYork, 1979.
  24. J.A. Fike, S. Jongsma, J.J. Alonso, and E.Van Der. Weide, Optimization with gradient and hessian information calculated using hyper-dual numbers, 29th AIAA Applied Aerodynamics Conference, 27-30 June, Honolulu, Hawaii, 2011.
  25. J.A. Fike, and J.J. Alonso, Automatic di erentiation through the use of hyper-dual numbers for decond derivatives, Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 87), 2011, pp. 163-173.
  26. J. Angeles, The dual generalized inverses and their applications in kinematic synthesis, Latest Advances in Robot Kinematics, Springer Netherlands, 2012, pp. 1-10.
  27. J.H. Bevis, and F.J. Hall, Pseudo-consimilarity and semi-consimilarity of complex matrices, Linear Algebra Appl., 90:73-80, 1987.
  28. L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bulletin of the American Mathematical Society, 42(10):737-743, 1936).
  29. M. Akar, S. Yüce, and S. Şahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, Journal of Computer Science and Computational Mathematics, 8(1):1-6, 2018.
  30. M. Erdoğdu, and M. Özdemir, On complex split quaternion matrices, Adv. Appl. Clifford Algebr., 23:625-638, 2013.
  31. M. Marin, and A. Öchsner, Complements of higher mathematics, Springer International Publishing, 2018.
  32. N. Gürses, G.Y. Şentürk, and S. Yüce, A study on dual-generalized complex and hyperbolic-generalized complex numbers, Gazi University Journal of Science, 34(1):180-194, 2021.
  33. N. Gürses, and G.Y. Şentürk, Matrix theory over DGC numbers, Journal of Science and Arts, 23(1): 209-228, 2023.
  34. N. Gürses, and G.Y. Şentürk, Dual-generalized complex matrices, 11th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2022), Istanbul, Türkiye, August 29-September 1, 2022, pp. 190-192.
  35. P. Fjelstad, Extending special relativity via the perplex numbers, Amer. J. Phys., 54(5):416-422, 1986.
  36. R.A. Horn, and C.R. Johnson, Matrix analysis, Cambridge University Press, UK, 1985.
  37. R.E. Hartwig, and M.S. Putcha, Semisimilarity for matrices over a division ring, Linear Algebra Appl., 39:125-132, 1981.
  38. S. Vlase, M. Marin, A. Öchsner, and E. Chircan, Matrix formalism used to describe the inertial properties in multibody dynamics, Continuum Mechanics and Thermodynamics, 34(5):1267-1285, 2022.
  39. S.T. Ling, X.H. Cheng, and T.S. Jiang, Consimilarity of quaternions and coneigenvalues of quaternion matrices, Applied Mathematics and Computation, 270:984-992, 2015.
  40. V. Majernik, Multicomponent number systems, Acta Phys. Pol. A, 90(3):491-498, 1996.
  41. W.R. Hamilton, On Quaternions; or on a new system of imaginaries in algebra, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (3rd Series), xxv-xxxvi, 1844-1850.
  42. Y. Alagöz, K.H. Oral, and S. Yüce, Split quaternion matrices, Miskolc Mathematical Notes, 13(2):223-232, 2012.
DOI: https://doi.org/10.2478/auom-2023-0036 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 145 - 165
Submitted on: Sep 25, 2022
Accepted on: Dec 29, 2022
Published on: Oct 21, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Nurten Gürses, Gülsüm Yeliz Şentürk, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.