References
- A.A. Harkin, and J.B. Harkin, Geometry of generalized complex numbers, Mathematics Magazine, 77(2):118-129, 2004.
- A. Cohen, and M. Shoham, Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory, 125:101-110, 2018.
- D. De Falco, E. Pennestrì, and F.E. Udwadia, On generalized inverses of dual matrices, Mech. Mach. Theory., 123:89-106, 2018.
- D.S. Bernstein, Orthogonal matrices and the matrix exponential, SIAM Rev., 32(4):673, 1990.
- D.S. Bernstein, and W. So, Some explicit formulas for the matrix exponential, IEEE Trans. Automat. Control I, 38(8):1228-1232, 1993.
- F.E. Udwadia, E. Pennestrì, and D. De Falco, Do all dual matrices have dual MoorePenrose generalized inverses? Mech. Mach. Theory, 151:103878, 2020.
- F. Messelmi, Dual-complex numbers and their holomorphic functions, hal-01114178, 2015.
- E. Pennestrì, and R. Stefanelli, Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(3):323-344, 2007.
- E. Pennestrì, and P.P. Valentini, Linear dual algebra algorithms and their application to kinematics, Multibody Dyn. Computat. Methods Appl. Sci., 12:207229, 2009.
- E. Study, Geometrie der dynamen: Die zusammensetzung von kräften und verwandte gegenstände der geometrie bearb, Leipzig, B.G. Teubner, 1903.
- F. Messelmi, Generalized numbers and their holomorphic functions, Int. J. Open Problems Complex Analysis, 7(1), 2015.
- F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251:21-57, 1997.
- G.R. Pennock, and A.T. Yang, Application of dual-number matrices to the inverse kinematics problem of robot manipulators, J. Mech., Trans., and Automation., 107(2):201-208, 1985.
- G. Sobczyk, The hyperbolic number plane, College Math. J., 26(4):268-280, 1995.
- H. Liitkepohl, Handbook of matrices, John Wiley and Sons Ltd., England, 1996.
- H.H. Cheng, and S. Thompson, Dual polynomials and complex dual numbers for analysis of spatial mechanisms, Proc. of ASME 24th Biennial Mechanisms Conference, Irvine, CA, 19-22 August 1996.
- H.H. Cheng, and S. Thompson, Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers, ASME. J. Mech. Des., 121(2):200-205, 1999.
- H.H. Kösal, On commutative quaternion matrices, Ph.D. Thesis. Sakarya: Sakarya University Graduate School of Natural and Applied Sciences; 2016, ID:434046.
- H.H. Kösal, M. Akyiğit, and M. Tosun, On the consimilarity of split quaternions and split quaternion matrices, Analele Universitatii “Ovidius” Constanta-Seria Matematica, 24(3):189-207, 2016.
- I.E. Leonard, The matrix exponential, SIAM review, 38(3):507-512, 1996.
- I. Kantor, and A. Solodovnikov, Hypercomplex numbers, Springer-Verlag, New York, 1989.
- I.M. Yaglom, Complex numbers in geometry, Academic Press, New York, 1968.
- I.M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, NewYork, 1979.
- J.A. Fike, S. Jongsma, J.J. Alonso, and E.Van Der. Weide, Optimization with gradient and hessian information calculated using hyper-dual numbers, 29th AIAA Applied Aerodynamics Conference, 27-30 June, Honolulu, Hawaii, 2011.
- J.A. Fike, and J.J. Alonso, Automatic di erentiation through the use of hyper-dual numbers for decond derivatives, Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 87), 2011, pp. 163-173.
- J. Angeles, The dual generalized inverses and their applications in kinematic synthesis, Latest Advances in Robot Kinematics, Springer Netherlands, 2012, pp. 1-10.
- J.H. Bevis, and F.J. Hall, Pseudo-consimilarity and semi-consimilarity of complex matrices, Linear Algebra Appl., 90:73-80, 1987.
- L.A. Wolf, Similarity of matrices in which the elements are real quaternions, Bulletin of the American Mathematical Society, 42(10):737-743, 1936).
- M. Akar, S. Yüce, and S. Şahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, Journal of Computer Science and Computational Mathematics, 8(1):1-6, 2018.
- M. Erdoğdu, and M. Özdemir, On complex split quaternion matrices, Adv. Appl. Clifford Algebr., 23:625-638, 2013.
- M. Marin, and A. Öchsner, Complements of higher mathematics, Springer International Publishing, 2018.
- N. Gürses, G.Y. Şentürk, and S. Yüce, A study on dual-generalized complex and hyperbolic-generalized complex numbers, Gazi University Journal of Science, 34(1):180-194, 2021.
- N. Gürses, and G.Y. Şentürk, Matrix theory over DGC numbers, Journal of Science and Arts, 23(1): 209-228, 2023.
- N. Gürses, and G.Y. Şentürk, Dual-generalized complex matrices, 11th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2022), Istanbul, Türkiye, August 29-September 1, 2022, pp. 190-192.
- P. Fjelstad, Extending special relativity via the perplex numbers, Amer. J. Phys., 54(5):416-422, 1986.
- R.A. Horn, and C.R. Johnson, Matrix analysis, Cambridge University Press, UK, 1985.
- R.E. Hartwig, and M.S. Putcha, Semisimilarity for matrices over a division ring, Linear Algebra Appl., 39:125-132, 1981.
- S. Vlase, M. Marin, A. Öchsner, and E. Chircan, Matrix formalism used to describe the inertial properties in multibody dynamics, Continuum Mechanics and Thermodynamics, 34(5):1267-1285, 2022.
- S.T. Ling, X.H. Cheng, and T.S. Jiang, Consimilarity of quaternions and coneigenvalues of quaternion matrices, Applied Mathematics and Computation, 270:984-992, 2015.
- V. Majernik, Multicomponent number systems, Acta Phys. Pol. A, 90(3):491-498, 1996.
- W.R. Hamilton, On Quaternions; or on a new system of imaginaries in algebra, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (3rd Series), xxv-xxxvi, 1844-1850.
- Y. Alagöz, K.H. Oral, and S. Yüce, Split quaternion matrices, Miskolc Mathematical Notes, 13(2):223-232, 2012.