Have a personal or library account? Click to login
On the dual quaternion geometry of screw motions Cover

References

  1. W. R. Hamilton, Elements of quaternions, I, II and III, Chelsea, New York, 1899.
  2. H.H. Hacısalihoğlu, Motion geometry and quaternions theory, Faculty of sciences and arts. university of Gazi press, Ankara, 1983.
  3. M. Nagaraj, K. Bharathi, Quaternion Valued Function of a Real Serret-Frenet Formulae, Indian J. Pure Appl. Math., 16 (7) (1985), 741-756.
  4. V. Majernik, Basic space time transformations expressed by means of two component number systems, Acta Phys. Pol. A., 86 (1) (1994), 291-295.
  5. V. Majernik, Quaternion formulation of the Galilean space time transformation, Acta Phy. Slovaca, 56 (1) (2006), 9-14.
  6. Y. Yaylı, E. E. Tütüncü, Generalized Galilean transformations and dual quaternions, Scientia Magna, 56 (1) (2009), 94-100.
  7. Z. Ercan, S. Yüce, On properties of the dual quaternions, European Journal of Pure and Applied Mathematics, 4 (2) (2011), 142-146.
  8. L. Kula, Y. Yaylı, A commutative multiplication of dual number triplets, Dumlupınar University Journal of Science Institute, 10 2006.
  9. O. Bottema, R. Roth, Theoretical kinematics, Amsterdam, 1979.
  10. W. K. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc. London, 1873.
  11. E. Study, Geometry der dynamen, Leipzig, Druck und Verlag von B.G. Teubner, 1903.
  12. B. Akyar, Dual quaternions in spatial kinematics in an algebraic sense, Turkish Journal of Mathematics, 32 (4) 2008.
  13. M. Gouasmi, Robot kinematics using dual quaternions, IAES International Journal of Robotics and Automation, 2012.
  14. DP. Han, Q. Wei, ZX. Li, Kinematic control of free rigid bodies using dual quaternions, Int. J. Autom. Comput., 5 (2008), 319-324.
  15. A. Atasoy, E. Ata, Y. Yaylı, Y. Kemer, A new polar representation for split and dual split quaternions, Advances in applied cli ord algebras, 27 (3) (2017), 2307-2319.
  16. M. Bekar, Y.Yaylı, Involutions in dual split-quaternions, Advances in applied cli ord algebras, 26 (2) (2016), 553-571.
  17. E. Ata, Y. Yaylı, Dual quaternions and dual projective spaces, Solutions and Fractals, 40 (3) (2009), 1255-1263.
  18. E. Ata, Y. Yaylı, Dual unitary matrices and unit dual quaternions, Di er. Geom. Dyn. Syst., 10 (2008), 1-12.
  19. L. Kula, Y. Yaylı, Dual split quaternions and screw motion in Minkowski 3-space, Iran J. math. tech.trans., 30 (3) (2006), 245-258.
  20. M.A. Güngör, M. Sarduvan, A note on dual quaternions and matrices of dual quaternions, Scientia Magna, 7 (1), 2011.
  21. A. Dağdeviren, S. Yüce, Dual quaternions and dual quaternionic curves, Filomat, 33 (2019), 1037-1046.
  22. G. Y. Şentürk, N. Gürses, S. Yüce, Algebraic construction for dual quaternions with GCN, Bitlis Eren University Journal Of Science, 11 (2) (2022), 586-593.
  23. S. Yüce, On the E. Study maps for the dual quaternions, Applied Mathematics E-Notes, 21 (2021), 365-374.
  24. L. Hao, W. Xiafu, Z. Yisheng, Quaternion-based robust attitude control for uncertain robotic quadrotors, Ieee Transactions On Industrial Informatics, 11 (2), 2015.
  25. F. Mehdi, Z. Nadjet, St-A. Jonathan, A novel quantum model of forward kinematics based on quaternion/Pauli gate equivalence: Application to a six-jointed industrial robotic arm, Results in Engineering, 14 (2022), 100402.
  26. J. Funda, R. P. Paul, A computational analysis of screw transformations in robotics, IEEE Transactions on Robotics and Automation, 6 (3) (1990), 348-356, doi: 10.1109/70.56653.
  27. F. Torunbalcı Aydın, Dual Jacobsthal Quaternions, Communications in Advanced Mathematical Sciences, 3 (3) (2020), 130-142, 10.33434/cams.680381.
  28. D. Güçler, N. Ekmekçi, Y. Yaylı, M. Helvacı, Obtaining the Parametric Equation of the Curve of the Sun’s Apparent Movement by Using Quaternions, Universal Journal of Mathematics and Applications, 5 (2) (2022), 42-50, doi:10.32323/ujma.1091832.
  29. K. Eren, H. Kösal, Numerical Algorithm for Solving General Linear Elliptic Quaternionic Matrix Equations, Fundamental journal of mathematics and applications, 4 (3) (2021), 180-186, 10.33401/fujma.888705.
  30. M. Jafarı, Matrix Formulation of Real Quaternions, Erzincan University Journal of Science and Technology, 8 (1) (2015), 27-37, doi: 10.18185/eufbed.99802.
  31. S. Kızıltuğ, T. Erişir, G. Mumcu, Y. Yaylı, On the quaternionic osculating direction curves, International Journal of Geometric Methods in Modern Physics, 19 (4) (2022), 2230001.
  32. G. Cerda-Morales, On fourth-order jacobsthal quaternions, Journal of Mathematical Sciences and Modelling, 1 (2) (2018), 73-79.
DOI: https://doi.org/10.2478/auom-2023-0035 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 125 - 143
Submitted on: Sep 24, 2022
Accepted on: Dec 22, 2022
Published on: Oct 21, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Tülay Erişir, Gökhan Mumcu, Sezai Kızıltuğ, Yusuf Yaylı, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.