References
- R. Blum, A Remarkable Class of Mannheim Curves. Canadian Mathematical Bulletin 9 (1966), 223-228.
- H. Liu, F. Wang, Mannheim Partner Curves in 3-Space. Journey of Geometry 88 (2008), 120-126.
- K. Orbay, E. Kasap, On Mannheim Partner Curves in E3. International Journal of Physical Sciences 4(5) (2009), 261-264.
- M. A. Güngör, M. Tosun, A Study on Dual Mannheim Partner Curves. International Mathematical Forum 5(47) (2010), 2319-2330.
- W. J. Lee, H. J. Choi, H. D. Jin, Slant Dual Mannheim Partner Curves in the Dual Space. Int. J. Contemp. Math. Science 31 (2011), 1535-1544.
- H. B. Öztekin, M. Ergüt, Null Mannheim Curves in the Minkowski 3-Space. Turk. J. Math. 35 (2011), 107114.
- M. Akyiğit, A. Z. Azak, Admissible Mannheim Curves in Pseudo-Galilean Space. Afr. Diaspora J. Math. (N.S.) 2 (2010), 58-65.
- M. Akyiğit, S. Ersoy, I. Özgür, M. Tosun, Generalized Timelike Mannheim Curves in Minkowski Space-Time E41. Math. Probl. Eng. 2011 (2011), 1-19, Article ID 539378.
- S. Ersoy, M. Tosun, H. Matsuda, Generalized Mannheim Curves in Minkowski Space-Time E14. Hokkaido Math. J. 41(3) (2012), 441-461.
- S. Ersoy, M. Masal, M. Tosun, On Mannheim Partner Curves of AW (k) Type. Uzbek. Mat. Zh. 1 (2014), 97107.
- K. S. Chou, C. Z. Qu, Integrable Equations Arising from Motions of Plane Curves. Physica, D. 162 (2002), 9-33.
- R. Myrzakulov, L. Martina, T. A. Kozhamkulov, Kur. Myrzakul, Integrable Heisenberg Ferromagnets and Soliton Geometry of Curves and Surfaces. In book: Nonlinear Physics: Theory and Experiment. II, World Scientific, London, 248-253, 2003.
- A. Myrzakul, R. Myrzakulov, Integrable Geometric Flows of Interacting Curves/Surfaces, Multilayer Spin Systems and the Vector Nonlinear Schrodinger Equation. Int. J. Geom. Methods Mod. 13(1) (2016), 1550134.
- A. Myrzakul, R. Myrzakulov, Integrable Motion of two Interacting Curves, Spin Systems and the Manakov System. Int. J. Geom. Methods Mod. 14(07) (2017), 1750115.
- J. Langer, R. Perline, Curve Motion Inducing Modified Korteweg-de Vries Systems. Phys. Lett. A. 239 (1998), 36-40.
- G. L. Lamb, Solitons on Moving Space Curves. J. Math. Phys. 18 (1977), 1654-1661.
- H. Hasimoto, A Soliton on a Vortex Filament. J. Fluid Mech. 51 (1972), 477-485.
- K. Konno, H. Oono, New Coupled Dispersionless Equations. J. Phys. Soc. Jpn. 63 (1994), 377378.
- K. Konno, H. Kakuhata, Interaction Among Growing, Decaying and Stationary Solitons for Coupled and Stationary Solitons. J. Phys. Soc. Jpn. 64 (1995), 27072709.
- H. Kakuhata, K. Konno, A Generalization of Coupled Integrable, Dispersionless System. J. Phys. Soc. Jpn. 65 (1996), 340341.
- H. Kakuhata, K. Konno, Lagrangian, Hamiltonian and Conserved Quantities for Coupled Integrable Dispersionless Equations. J. Phys. Soc. Jpn. 65 (1996), 12.
- S. F. Shen, B. F. Feng, Y. Ohta, From the Real and Complex Coupled Dispersionless Equations to the Real and Complex Short Pulse Equations. Stud. Appl. Math. 136 (2016), 64-88.
- B. F. Feng, K. Maruno, Y. Ohta, Geometric Formulation and Multi-Dark Soliton Solution to the Defocusing Complex Short Pulse Equation. Stud. Appl. Math. 138 (2017), 343367.
- B. F. Feng, K. Maruno, Y. Ohta, Self-Adaptive Moving Mesh Schemes for Short Pulse Type Equations and Their Lax Pairs. Pac. J. Math. Ind. 6 (2014), 720.
- B. ONeill, Elementary Di erential Geometry. Revised 2nd edition, Academic Press, USA, 2006.