Have a personal or library account? Click to login
Some Fixed Point Results for Sehgal-Proinov Type Contractions in Modular b−Metric Spaces Cover

Some Fixed Point Results for Sehgal-Proinov Type Contractions in Modular b−Metric Spaces

Open Access
|Oct 2023

References

  1. S. Banach, Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales, Fund. Math., 1, (1922), 133181.
  2. V. W. Bryant, A remark on a fixed point theorem for iterated mappings, The American Mathematical Monthly, 75, (1968), 399400.
  3. V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc., 23, (1969), 631634.
  4. L. F. Guseman, Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc., 26, (1970), 615618.
  5. B. Alqahtani, A. Fulga, E. Karapınar, Sehgal type contractions on b-metric space, Symmetry, 10(11), (2018), 560.
  6. A. Öztürk, A fixed point theorem for mappings with an F −contractive iterate, Adv. Theory Nonlinear Anal. Appl., 3(4), (2019), 231236.
  7. A. P. Farajzadeh, M. Delfani, Y. H. Wang, Existence and uniqueness of fixed points of generalized F −contraction mappings, Journal of Mathematics, 2021, (2021), 19, ID:6687238.
  8. B. Alqahtani, A. Fulga, E. Karapınar, P. S. Kumari, Sehgal type contractions on dislocated spaces, Mathematics, 7(2), (2019), 153.
  9. D. Zheng, G. Ye, D. Liu, Sehgal–Guseman type fixed point theorem in b−rectangular metric spaces, Mathematics, 9, (2021), 3149.
  10. N. A. Secelean, D. Wardowski, M. Zhou, The Sehgals fixed point result in the framework of ^−Space, Mathematics, 10, (2022), 459.
  11. J. Zhou, W. Yuan, Sehgal-Guseman-type fixed point theorem on b−metric spaces, Int. J. Math. Anal., 16(2), (2022), 7380.
  12. P. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22, (2020), 21.
  13. E. Karapınar, J. Martinez-Moreno, N. Shahzad, A. F. Roldan Lopez de Hierro, Extended Proinov X−contractions in metric spaces and fuzzy metric spaces satisfying the property NC by avoiding the monotone condition, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116(4), (2022), 128.
  14. E. Karapınar, M. De La Sen, A. Fulga, A note on the Gornicki-Proinov type contraction, J. Funct. Spaces, 2021, (2021), DOI: org/10.1155/2021/6686644.
  15. A. F. Roldan Lopez de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov type fixed point results in non-Archimedean fuzzy metric spaces. Mathematics, 9(14), (2021), 1594.
  16. S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for ( α, β ) − (ψ, φ) −contractive mappings, Filomat, 28, (2014), 635647.
  17. A. Latif, A. H. Ansari, Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings, J. Nonlinear Sci. Appl., 9, (2016), 11291142.
  18. I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30, (1989), 2637.
  19. S. Czerwik, Contraction mappings in b−metric spaces, Acta. Math. Inform. Univ. Ostrav., 1(1), (1993), 511.
  20. S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ.Modena, 46, (1998), 263276.
  21. A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b−metric spaces, Math. Slovaca, 64(4), (2014), 941960.
  22. V. V. Chistyakov, Modular metric spaces generated by F −modulars, Folia Math., 15, (2008), 324.
  23. V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal., 72, (2010), 114.
  24. V. V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Anal., 72, (2010), 1530.
  25. V. V. Chistyakov, Fixed points of modular contractive maps, Dokl. Math., 86, (2012), 515518.
  26. A. A. N. Abdou, M. A. Khamsi, Fixed points of multi-valued contraction mappings in modular metric spaces, Fixed Point Theory Appl., 2014, (2014), 249.
  27. S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30, (1969), 475488.
  28. A. Padcharoen, P. Kumam, G. Gopal, P. Chaipunya, Fixed points and periodic point results for −type F −contractions in modular metric spaces, Fixed Point Theory Appl., 2016, (2016), 39.
  29. C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Appl., 93, (2011), 19.
  30. U. Aksoy, E. Karapınar, I. M. Erhan, V. Rakocevic, Meir-Keeler Type Contractions on Modular Metric Spaces, Filomat, 32(10), (2018), 36973707.
  31. M. Jleli, E. Karapınar, B. Samet, A best proximity point result in modular spaces with the Fatou property, Abstr. Appl. Anal., 2013, (2013), DOI: org/10.1155/2013/329451.
  32. M. E. Ege, C. Alaca, Some results for modular b−metric spaces and an application to system of linear equations, Azerbaijan J. Math., 8(1), (2018), 314.
  33. V. Parvaneh, N. Hussain, M. Khorshidi, N. Mlaiki, H. Aydi, Fixed point results for generalized F −contractions in modular b−metric spaces with applications, Mathematics, 7(10), (2019), 116.
  34. B. S. Choudhury, N. Metiya, S. Kundu, D. Khatua, Fixed points of multi-valued mappings in metric spaces, Surv. Math. Appl., 14 (2019), 116.
  35. L. Ciric, On contraction type mappings, Math. Balcanica, 1, (1971), 5257
DOI: https://doi.org/10.2478/auom-2023-0032 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 61 - 86
Submitted on: Sep 26, 2022
Accepted on: Feb 7, 2023
Published on: Oct 21, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Abdurrahman Büyükkaya, Mahpeyker Öztürk, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.