Have a personal or library account? Click to login
Fixed Point Index for Simulation Mappings and Applications Cover

References

  1. D. Ariza-Ruiz and J.Garcia-Falset, Abstract measures of noncompactness and fixed point for nonlinear mappings, Fixed Point Theory 21(2020), No. 1, 47-66.
  2. A. Benmezai and B. Boucheneb, A fixed point theorem for positive strict set-contraction mapping and its application to Urysohn type integral equations, Arch. Math., 105 (2015), 389-399.
  3. A. Benmezai, B. Boucheneb, S, Mechrouk and J. Henderson, The index-jump property for 1-homogeneous positive maps and fixed point theorems on cones, J. Nonlinear Funct. Anl.(2017), Article ID 6.
  4. A. Benmezai, K. Hammache and N. Melouane, Fixed Point Index Theory for Positive µ ψϕ-Set Contractive Mappings, Applications, to appear.
  5. A. Benmezai and S. Mechrouk, Positive solution to the nolinear abstract Hammerstein equation and applications to ϕ−Laplacian BVPs, Nonlinear Di . Equat. Appl., 20 (2013), No 3, 489-510.
  6. A. Benmezai, S. Mechrouk and J. Henderson, Fixed point theorem for positive maps and application, Comm. Math. Ana., 18 (2015), No 2, 112-126.
  7. J. Chen and X. Tangn, Generalizations of Darbo’s fixed point theorem via simulation function with application to functional integral equation, Journal of Computational and Applied Mathematics, (2015)
  8. J. G. Dix and G. L. Karakostas, A fixed-point theorem for S-type operators on Banach spaces and its applications to boundary-value problems, Nonlinear Anal., 71 (2009), 3872-3880.
  9. J. Garcia and O. Muniz-Perez, Fixed point theory for 1-set contractive and pseudocontractive mappings Applied Mathematics and computation 219 (2013), 6843-6855.
  10. D. Guo,Eigenvalues and eigenvectors of nonlinear operators, Chinese Ann. Math., 2 (1981), 65-80 [English].
  11. D. Guo and V. Lakshmikantham, Non linear problems in abstract cones, Academic Press, Inc, Boston, New York (1988).
  12. L. Guozhen, The fixed point index and the fixed-point theorem of 1-set contraction mappings, Proc. Amer. Math. Soc., 104 (1988), No 4, 1163-1170.
  13. S. Jingxian, The generalization of Guo’s theorem and applications, J. Math. Math. Anal. Appl., 126 (1987), 566-567 .
  14. F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation function, Filomat, 29 (2015), No 6, 1189-1194.
  15. K. Kuratowski, Sur les espaces completes, Fund. Math., 15 (1930), 301-209.
  16. R. D. Nussbaum, The fixed point index and fixed point theorems for k-set contractions, Univ.of Chicago, Ph.D. Thesis, 1969..
  17. R. D Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Appl. 89 (1971), 217-258.
  18. A. F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355.
  19. E. Zeidler, Nonlinear Functional Analysis and its Applications. Vol. I: Fixed Point Theorems, Springer-Verlag, New York, 1986.
DOI: https://doi.org/10.2478/auom-2023-0030 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 27 - 45
Submitted on: Sep 26, 2022
Accepted on: Feb 6, 2023
Published on: Oct 21, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Abdelhamid Benmezaï, Karima Hammache, Nassima Melouane, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.