References
- K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang and Y. Zhao, The Gauss image problem, Comm. Pure Appl. Math., 73 (7) (2020), 1406–1452.
- R. J. Gardner, Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, New York, 2006.
- D. Lai, H, Jin, The dual BrunnMinkowski inequality for log-volume of star bodies, J. Inequal. Appl., 2021 (2021): 112.
- R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 2014.
- E. Lutwak, The Brunn-Minkowski-Firey theory. II. A ne and geominimal surface areas. Adv. Math., 118 (1996), 244–294.
- W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math., 13 (1961), 444–453.
- E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365–391.
- W. Wang, G. Leng, Lp-dual mixed quermassintegrals, Indian J. Pure Appl. Math., 36 (2005), 177–188.
- N. S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. Henri Poincaré, 11 (1994), 411–425.
- C.-J. Zhao, Orlicz dual a ne quermassintegrals, Forum Math., 30 (2018), 929–945.