Have a personal or library account? Click to login
Inequalities for pqth-dual mixed volumes Cover

References

  1. K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang and Y. Zhao, The Gauss image problem, Comm. Pure Appl. Math., 73 (7) (2020), 1406–1452.
  2. R. J. Gardner, Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, New York, 2006.
  3. D. Lai, H, Jin, The dual BrunnMinkowski inequality for log-volume of star bodies, J. Inequal. Appl., 2021 (2021): 112.
  4. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 2014.
  5. E. Lutwak, The Brunn-Minkowski-Firey theory. II. A ne and geominimal surface areas. Adv. Math., 118 (1996), 244–294.
  6. W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math., 13 (1961), 444–453.
  7. E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365–391.
  8. W. Wang, G. Leng, Lp-dual mixed quermassintegrals, Indian J. Pure Appl. Math., 36 (2005), 177–188.
  9. N. S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. Henri Poincaré, 11 (1994), 411–425.
  10. C.-J. Zhao, Orlicz dual a ne quermassintegrals, Forum Math., 30 (2018), 929–945.
DOI: https://doi.org/10.2478/auom-2023-0027 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 191 - 199
Submitted on: Aug 14, 2022
Accepted on: Dec 20, 2022
Published on: Mar 27, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Chang-Jian Zhao, Mihály Bencze, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.