Have a personal or library account? Click to login
Fibonacci and Lucas Polynomials in n-gon Cover

References

  1. B. Kuloglu, E. Özkan, On Generalized (k,r)-Gauss Pell Numbers, Journal of Science and Arts 3(56) (2021), 617-624, DOI: 10.46939/J.Sci.Arts-21.3-a02.
  2. S. Çelik, I. Durkan, and E. Özkan, New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers, Chaos, Solitons ---amp--- Fractals 150 (2021), 111173.
  3. Ö. Deveci, S. Hulku, and A. G. Shannon, On the co-complex-type k-Fibonacci numbers, Chaos, Solitons ---amp--- Fractals 153(2) (2021), 111522.
  4. R. Florez, N. McAnally, and A. Mukherjee, Identities for the generalized Fibonacci polynomials,, INTEGERS 18B (2018).
  5. E. Özkan, B. Kuloglu, On the new Narayana polynomials, the Gauss Narayana numbers and their polynomials, Asian-European Journal of Mathematics 14(6) (2021) 2150100.
  6. T. Koshy, New Fibonacci and Lucas identities,, The Mathematical Gazette 82481-184 (1998).
  7. T. Koshy, Fibonacci and Lucas numbers with applications,, Wiley-Interscience Publishing (2001), Canada.
  8. E. P. Miles, Generalized Fibonacci numbers and associated matrices,, The American Mathematically Monthly 67(8) (1960), 745-752.
  9. E. Özkan, 3-Step Fibonacci Sequence in Nilpotent Groups, Applied Mathematics and Computatiton 144 (2003), 517-527.
  10. E. Özkan, N. Ş. Yilmaz, and A. W loch, On F3(k,n)-numbers of the Fibonacci type, Bol. Soc. Mat. Mex. 27,77 (2021), doi.org/10.1007/s40590-021-00381-9.
  11. E. Özkan, I. Altun, and A. Göçer, On Relationship among A New Family of k-Fibonacci, k-Lucas Numbers, Fibonacci and Lucas Numbers, Chiang Mai Journal of Science 44 (2017), 1744-1750.
  12. E. Özkan, Í. Altun, Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Communications in Algebra 47 (2019), 4020-40.
  13. E. Özkan, M. Taştan, A new Families of Gauss k-Jacobsthal and Gauss k-Jacobsthal-Lucas Numbers and Their Polynomials, Journal of Science and Arts 4(53) (2020).
  14. A. G. Shannon, Ö. Deveci, A note on the coefficient array of a generalized Fibonacci polynomial, Notes on Number Theory and Discrete Mathematics 26(4) (2020), 206-212,DOI: 10.7546/nntdm.2020.26.4.206-212.
  15. N. J. A. Sloane, The on-line encyclopedia of integer sequences, https://oeis.org/. Accessed 10 May 2021.
  16. D. Strza lka, W. S lawomir, and W. Andrzej, Distance Fibonacci Polynomials by Graph Methods, Symmetry, 13(11) (2021), 2075, DOI://doi.org/10.3390/sym13112075.
  17. M. Taştan, E. Özkan, and A. G. Shannon, The generalized k-Fibonacci polynomials and generalized k-Lucas polynomials, Notes Number Theory Discret. Math 27 (2021), 148-158.
  18. B. Urszula, M. Wo lowiec-Musia l, Distance Fibonacci Polynomials, Part II, Symmetry 13(9) (2021), 1723, DOI://doi.org/10.3390/sym13091723.
  19. S. Vajda, Fibonacci ---amp--- Lucas numbers, and golden section, Theory and Applications (1989) Ellis Horwood, Chichester.
  20. I. W loch, A. W loch, On some multinomial sums related to the Fibonacci type numbers, Tatra Mt. Math. Publ 77 (2020), 99-108.
  21. Ganie, A. H., Özkan, E., Uysal, M. and Akhter, A. On New Polynomial Sequences Constructed to Each Vertex in an n-Gon, Discrete Dynamics in Nature and Society (2022), 2910678.
  22. Abouelregal, A.E., Marin, M., The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating, Mathematics 8(7) (2020), Art. No. 1128.
  23. Abouelregal, A.E., Marin, M., The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory, Symmetry 12(8) (2020), Art. No. 1276.
  24. Scutaru, ML, et al., New analytical method based on dynamic response of planar mechanical elastic systems, Boundary Value Problems Vol. 2020, No. 1, Art. No. 104.
DOI: https://doi.org/10.2478/auom-2023-0023 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 127 - 140
Submitted on: Aug 23, 2022
Accepted on: Dec 22, 2022
Published on: Mar 27, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Bahar Kuloğlu, Engin Özkan, Marin Marin, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.