References
- B. Kuloglu, E. Özkan, On Generalized (k,r)-Gauss Pell Numbers, Journal of Science and Arts 3(56) (2021), 617-624, DOI: 10.46939/J.Sci.Arts-21.3-a02.
- S. Çelik, I. Durkan, and E. Özkan, New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers, Chaos, Solitons ---amp--- Fractals 150 (2021), 111173.
- Ö. Deveci, S. Hulku, and A. G. Shannon, On the co-complex-type k-Fibonacci numbers, Chaos, Solitons ---amp--- Fractals 153(2) (2021), 111522.
- R. Florez, N. McAnally, and A. Mukherjee, Identities for the generalized Fibonacci polynomials,, INTEGERS 18B (2018).
- E. Özkan, B. Kuloglu, On the new Narayana polynomials, the Gauss Narayana numbers and their polynomials, Asian-European Journal of Mathematics 14(6) (2021) 2150100.
- T. Koshy, New Fibonacci and Lucas identities,, The Mathematical Gazette 82481-184 (1998).
- T. Koshy, Fibonacci and Lucas numbers with applications,, Wiley-Interscience Publishing (2001), Canada.
- E. P. Miles, Generalized Fibonacci numbers and associated matrices,, The American Mathematically Monthly 67(8) (1960), 745-752.
- E. Özkan, 3-Step Fibonacci Sequence in Nilpotent Groups, Applied Mathematics and Computatiton 144 (2003), 517-527.
- E. Özkan, N. Ş. Yilmaz, and A. W loch, On F3(k,n)-numbers of the Fibonacci type, Bol. Soc. Mat. Mex. 27,77 (2021), doi.org/10.1007/s40590-021-00381-9.
- E. Özkan, I. Altun, and A. Göçer, On Relationship among A New Family of k-Fibonacci, k-Lucas Numbers, Fibonacci and Lucas Numbers, Chiang Mai Journal of Science 44 (2017), 1744-1750.
- E. Özkan, Í. Altun, Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Communications in Algebra 47 (2019), 4020-40.
- E. Özkan, M. Taştan, A new Families of Gauss k-Jacobsthal and Gauss k-Jacobsthal-Lucas Numbers and Their Polynomials, Journal of Science and Arts 4(53) (2020).
- A. G. Shannon, Ö. Deveci, A note on the coefficient array of a generalized Fibonacci polynomial, Notes on Number Theory and Discrete Mathematics 26(4) (2020), 206-212,DOI: 10.7546/nntdm.2020.26.4.206-212.
- N. J. A. Sloane, The on-line encyclopedia of integer sequences, https://oeis.org/. Accessed 10 May 2021.
- D. Strza lka, W. S lawomir, and W. Andrzej, Distance Fibonacci Polynomials by Graph Methods, Symmetry, 13(11) (2021), 2075, DOI://doi.org/10.3390/sym13112075.
- M. Taştan, E. Özkan, and A. G. Shannon, The generalized k-Fibonacci polynomials and generalized k-Lucas polynomials, Notes Number Theory Discret. Math 27 (2021), 148-158.
- B. Urszula, M. Wo lowiec-Musia l, Distance Fibonacci Polynomials, Part II, Symmetry 13(9) (2021), 1723, DOI://doi.org/10.3390/sym13091723.
- S. Vajda, Fibonacci ---amp--- Lucas numbers, and golden section, Theory and Applications (1989) Ellis Horwood, Chichester.
- I. W loch, A. W loch, On some multinomial sums related to the Fibonacci type numbers, Tatra Mt. Math. Publ 77 (2020), 99-108.
- Ganie, A. H., Özkan, E., Uysal, M. and Akhter, A. On New Polynomial Sequences Constructed to Each Vertex in an n-Gon, Discrete Dynamics in Nature and Society (2022), 2910678.
- Abouelregal, A.E., Marin, M., The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating, Mathematics 8(7) (2020), Art. No. 1128.
- Abouelregal, A.E., Marin, M., The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory, Symmetry 12(8) (2020), Art. No. 1276.
- Scutaru, ML, et al., New analytical method based on dynamic response of planar mechanical elastic systems, Boundary Value Problems Vol. 2020, No. 1, Art. No. 104.