References
- M. M. Ali, Residual submodules of multiplication modules, Beiträge zur Algebra und Geometrie, 46 (2005), 405–422.
- D. D. Anderson, M. Winders, Idealization of a module, J. Commut. Algebra, 1 (1) (2009), 3-56.
- Y. Azimi, P. Sahandi and N. Shirmohammadi, Prüfer conditions under the amalgamated algebras, Commun. Algebra, 47(5) (2019), 2251–2261.
- A. Badawi, On weakly semiprime ideals of commutative rings, Beitr. Algebra Geom., 57 (2016) 589–597.
- E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar., 154(1) (2018), 29-42.
- M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443–459.
- M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
- R. El Khalfaoui, N. Mahdou, P. Sahandi and N. Shirmohammadi, Amalgamated modules along an ideal, Commun. Korean Math. Soc., 36(1), (2021) 1-10.
- R. Gilmer, Multiplicative Ideal Theory. New York, NY, USA: Marcel Dekker, 1972.
- H. A. Khashan, A. B. Bani-Ata, J-ideals of commutative rings, International Electronic Journal of Algebra, 29 (2021), 148-164.
- H. A. Khashan, E. Yetkin Celikel,, Weakly J-ideals of commutative rings, Filomat, 36(2), (2022), 485–495.
- H. A. Khashan, E. Yetkin Celikel, Quasi J-ideals of commutative rings, Ricerche di Matematica, (2022), 1–13.
- S. Koc, U. Tekir, r-Submodules and sr-Submodules, Turkish Journal of Mathematics, 42(4) (2018), 1863-1876.
- T. K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, 236 (2004), 365–377.
- R. Mohamadian, r-ideals in commutative rings, Turkish Journal of Mathematics, 39 (2015), 733-749.
- B. Saraç, On semiprime submodules, Communications in Algebra, 37(7) (2009), 2485–2495.
- P. Smith, Some remarks on multiplication modules, Arch. Math., 50 (1988), 223-235.
- U. Tekir, S. Koc and K. H. Oral, n-ideals of commutative rings, Filomat, 31(10) (2017), 2933–2941.
- E. Yetkin Celikel, Generalizations of n-ideals of Commutative Rings. Erzincan Universitesi Fen Bilimleri Enstitüsü Dergisi, 12(2) (2019), 650-657.
- E. Yetkin Celikel, H. A. Khashan, Semi n-ideals of commutative rings, Czechoslovak Mathematical Journal, 72(147) (2022), 977988.