Have a personal or library account? Click to login
Semi r-ideals of commutative rings Cover

References

  1. M. M. Ali, Residual submodules of multiplication modules, Beiträge zur Algebra und Geometrie, 46 (2005), 405–422.
  2. D. D. Anderson, M. Winders, Idealization of a module, J. Commut. Algebra, 1 (1) (2009), 3-56.
  3. Y. Azimi, P. Sahandi and N. Shirmohammadi, Prüfer conditions under the amalgamated algebras, Commun. Algebra, 47(5) (2019), 2251–2261.
  4. A. Badawi, On weakly semiprime ideals of commutative rings, Beitr. Algebra Geom., 57 (2016) 589–597.
  5. E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar., 154(1) (2018), 29-42.
  6. M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443–459.
  7. M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  8. R. El Khalfaoui, N. Mahdou, P. Sahandi and N. Shirmohammadi, Amalgamated modules along an ideal, Commun. Korean Math. Soc., 36(1), (2021) 1-10.
  9. R. Gilmer, Multiplicative Ideal Theory. New York, NY, USA: Marcel Dekker, 1972.
  10. H. A. Khashan, A. B. Bani-Ata, J-ideals of commutative rings, International Electronic Journal of Algebra, 29 (2021), 148-164.
  11. H. A. Khashan, E. Yetkin Celikel,, Weakly J-ideals of commutative rings, Filomat, 36(2), (2022), 485–495.
  12. H. A. Khashan, E. Yetkin Celikel, Quasi J-ideals of commutative rings, Ricerche di Matematica, (2022), 1–13.
  13. S. Koc, U. Tekir, r-Submodules and sr-Submodules, Turkish Journal of Mathematics, 42(4) (2018), 1863-1876.
  14. T. K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, 236 (2004), 365–377.
  15. R. Mohamadian, r-ideals in commutative rings, Turkish Journal of Mathematics, 39 (2015), 733-749.
  16. B. Saraç, On semiprime submodules, Communications in Algebra, 37(7) (2009), 2485–2495.
  17. P. Smith, Some remarks on multiplication modules, Arch. Math., 50 (1988), 223-235.
  18. U. Tekir, S. Koc and K. H. Oral, n-ideals of commutative rings, Filomat, 31(10) (2017), 2933–2941.
  19. E. Yetkin Celikel, Generalizations of n-ideals of Commutative Rings. Erzincan Universitesi Fen Bilimleri Enstitüsü Dergisi, 12(2) (2019), 650-657.
  20. E. Yetkin Celikel, H. A. Khashan, Semi n-ideals of commutative rings, Czechoslovak Mathematical Journal, 72(147) (2022), 977988.
DOI: https://doi.org/10.2478/auom-2023-0022 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 101 - 126
Submitted on: Jul 22, 2022
Accepted on: Dec 29, 2022
Published on: Mar 27, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Hani A. Khashan, Ece Yetkin Celikel, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.