Have a personal or library account? Click to login
A note on minimal resolutions of vector–spread Borel ideals Cover
Open Access
|Mar 2023

References

  1. L. Amata, M. Crupi, Extremal Betti numbers of t–spread strongly stable ideals, Mathematics 7(695) (2019).
  2. L. Amata, M. Crupi, A. Ficarra, Upper bounds for extremal Betti numbers of t–spread strongly stable ideals, Bull. Math. Soc. Sci. Math. Roumanie 65 (113), No. 1 (2022), 13–34.
  3. L. Amata, A. Ficarra, M. Crupi, A numerical characterization of the extremal Betti numbers of t-spread strongly stable ideals, J. Algebr. Comb. 55, 891–918 (2022)
  4. L. Amata, M. Crupi, A. Ficarra, Projective dimension and Castelnuovo– Mumford regularity of t–spread ideals, Internat. J. Algebra Comput 32 No. 4 (2022), 837–858
  5. C. Andrei, V. Ene, B. Lajmiri, Powers of t–spread principal Borel ideals, Arch. Math. 112(6) (2019), 587–597.
  6. A. Aramova, J. Herzog, T. Hibi, Shifting Operations and Graded Betti Numbers, J. Algebr. Comb. 12 (2000), 207–222.
  7. D. Bayer, H. Charalambous, S. Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra 221 (1999), 497–512.
  8. W. Bruns, J. Herzog, Cohen-Macaulay rings, Revised Ed., Cambridge University Press, 1998.
  9. M. Crupi, Extremal Betti numbers of graded modules, J. Pure Appl. Algebra 220 (2016), 2277–2288.
  10. M. Crupi, C. Ferrò, Squarefree monomial modules and extremal Betti numbers, Algebra Colloq. 23 (2016), 519–530.
  11. M. Crupi, A. Ficarra, Classification of Cohen–Macaulay t–spread lexsegment ideals via simplicial complexes, Illinois J. Math., Advance Publication 1–30, 2022. DOI: 10.1215/00192082-10201831.
  12. R. Dinu, J. Herzog, A. A. Qureshi, Restricted classes of veronese type ideals and algebras, Internat. J. Algebra Comput. 31(01) (2021), 173–197.
  13. V. Ene, J. Herzog, A. A. Qureshi, t–spread strongly stable monomial ideals, Comm. Algebra 47 (12) (2019), 5303–5316.
  14. D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2.
  15. A. Ficarra, Vector–spread monomial ideals and Eliahou–Kervaire type resolution, J. Algebra 615 (2023), 170–204.
  16. J. Herzog, T. Hibi, Monomial ideals, Graduate texts in Mathematics 260, Springer–Verlag, 2011.
  17. J. Herzog, Y. Takayama, Resolutions by mapping cones, in: The Roos Festschrift volume Nr.2(2), Homology, Homotopy and Applications 4 (2002), 277–294.
DOI: https://doi.org/10.2478/auom-2023-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 71 - 84
Submitted on: Jun 21, 2022
Accepted on: Nov 21, 2022
Published on: Mar 27, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Marilena Crupi, Antonino Ficarra, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.