References
- L. Amata, M. Crupi, Extremal Betti numbers of t–spread strongly stable ideals, Mathematics 7(695) (2019).
- L. Amata, M. Crupi, A. Ficarra, Upper bounds for extremal Betti numbers of t–spread strongly stable ideals, Bull. Math. Soc. Sci. Math. Roumanie 65 (113), No. 1 (2022), 13–34.
- L. Amata, A. Ficarra, M. Crupi, A numerical characterization of the extremal Betti numbers of t-spread strongly stable ideals, J. Algebr. Comb. 55, 891–918 (2022)
- L. Amata, M. Crupi, A. Ficarra, Projective dimension and Castelnuovo– Mumford regularity of t–spread ideals, Internat. J. Algebra Comput 32 No. 4 (2022), 837–858
- C. Andrei, V. Ene, B. Lajmiri, Powers of t–spread principal Borel ideals, Arch. Math. 112(6) (2019), 587–597.
- A. Aramova, J. Herzog, T. Hibi, Shifting Operations and Graded Betti Numbers, J. Algebr. Comb. 12 (2000), 207–222.
- D. Bayer, H. Charalambous, S. Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra 221 (1999), 497–512.
- W. Bruns, J. Herzog, Cohen-Macaulay rings, Revised Ed., Cambridge University Press, 1998.
- M. Crupi, Extremal Betti numbers of graded modules, J. Pure Appl. Algebra 220 (2016), 2277–2288.
- M. Crupi, C. Ferrò, Squarefree monomial modules and extremal Betti numbers, Algebra Colloq. 23 (2016), 519–530.
- M. Crupi, A. Ficarra, Classification of Cohen–Macaulay t–spread lexsegment ideals via simplicial complexes, Illinois J. Math., Advance Publication 1–30, 2022. DOI: 10.1215/00192082-10201831.
- R. Dinu, J. Herzog, A. A. Qureshi, Restricted classes of veronese type ideals and algebras, Internat. J. Algebra Comput. 31(01) (2021), 173–197.
- V. Ene, J. Herzog, A. A. Qureshi, t–spread strongly stable monomial ideals, Comm. Algebra 47 (12) (2019), 5303–5316.
- D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2.
- A. Ficarra, Vector–spread monomial ideals and Eliahou–Kervaire type resolution, J. Algebra 615 (2023), 170–204.
- J. Herzog, T. Hibi, Monomial ideals, Graduate texts in Mathematics 260, Springer–Verlag, 2011.
- J. Herzog, Y. Takayama, Resolutions by mapping cones, in: The Roos Festschrift volume Nr.2(2), Homology, Homotopy and Applications 4 (2002), 277–294.