Have a personal or library account? Click to login
Friedmann equations as n-dimensional dynamical system Cover

References

  1. V. Aboites, J. F. Bravo-Avilés, J. H. García-López, R. Jaimes-Reategui and G. Huerta-Cuellar, Interpretation and Dynamics of the Lotka-Volterra Model in the Description of a Three-Level Laser. Photonics 9 (2022), 16.
  2. S. Bahamonde, C. G. Böhmer, S. Carloni, E. J. Copeland, W. Fang and N. Tamanini, Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rep. 775-777 (2018), 1-122.
  3. D. Branković, Cosmic Time for Multi-Component Universe. Serb. Astron. J. 201 (2020), 15-23.
  4. D. Branković and Ž. Mijajlović, Dynamics of the CDM model of the universe from the aspect of the dynamical systems theory. arXiv preprint (2022). https://arxiv.org/abs/2209.02605.
  5. Y. Chen, J. Ni and Y. C. Ong, Lotka-Volterra models for extraterrestrial self-replicating probes. Eur. Phys. J. Plus 137 (2022), 1109.
  6. U. Foryś, Multi-dimensional Lotka-Volterra systems for carcinogenesis mutations. Math. Meth. Appl. Sci. 32 (2009), 2287-2308.
  7. A. Friedmann, Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 21 (1924), 326-332.
  8. R. García-Salcedo, T. Gonzalez, F. A. Horta-Rangel, I. Quiros and D. Sanchez-Guzmán, Introduction to the application of dynamical systems theory in the study of the dynamics of cosmological models of dark energy. Eur. J. Phys. 36 (2015), 025008.
  9. M. Goliath and G. F. R. Ellis, Homogeneous cosmologies with a cosmological constant. Phys. Rev. D 60 (1999), 023502.
  10. M. P. Hobson, G. P. Efstathiou and A. N. Lasenby, General Relativity: An Introduction for Physicists. Cambridge University Press, 2006.
  11. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000.
  12. A. J. Lotka, UNDAMPED OSCILLATIONS DERIVED FROM THE LAW OF MASS ACTION. J. Am. Chem. Soc. 42 (1920), 1595-1599.
  13. Ž. Mijajlović and D. Branković, Algebraic dependencies and representations of cosmological parameters. Publ. Astron. Obs. Belgrade 100 (2021), 295-300.
  14. J. Perez, A. Füzfa, T. Carletti, L. Mélot and L. Guedezounme, The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework. Gen. Relativ. Gravit. 46 (2014), 1753.
  15. A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 1996.
  16. J.-P. Uzan and R. Lehoucq, A dynamical study of the Friedmann equations. Eur. J. Phys. 22 (2001), 371.
  17. V. Volterra, Fluctuations in the Abundance of a Species considered Mathematically. Nature 118 (1926), 558-560.
DOI: https://doi.org/10.2478/auom-2023-0017 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 23 - 37
Submitted on: Nov 6, 2022
Accepted on: Jan 22, 2023
Published on: Mar 27, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Danijela Branković, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.