References
- V. Aboites, J. F. Bravo-Avilés, J. H. García-López, R. Jaimes-Reategui and G. Huerta-Cuellar, Interpretation and Dynamics of the Lotka-Volterra Model in the Description of a Three-Level Laser. Photonics 9 (2022), 16.
- S. Bahamonde, C. G. Böhmer, S. Carloni, E. J. Copeland, W. Fang and N. Tamanini, Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rep. 775-777 (2018), 1-122.
- D. Branković, Cosmic Time for Multi-Component Universe. Serb. Astron. J. 201 (2020), 15-23.
- D. Branković and Ž. Mijajlović, Dynamics of the CDM model of the universe from the aspect of the dynamical systems theory. arXiv preprint (2022). https://arxiv.org/abs/2209.02605.
- Y. Chen, J. Ni and Y. C. Ong, Lotka-Volterra models for extraterrestrial self-replicating probes. Eur. Phys. J. Plus 137 (2022), 1109.
- U. Foryś, Multi-dimensional Lotka-Volterra systems for carcinogenesis mutations. Math. Meth. Appl. Sci. 32 (2009), 2287-2308.
- A. Friedmann, Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 21 (1924), 326-332.
- R. García-Salcedo, T. Gonzalez, F. A. Horta-Rangel, I. Quiros and D. Sanchez-Guzmán, Introduction to the application of dynamical systems theory in the study of the dynamics of cosmological models of dark energy. Eur. J. Phys. 36 (2015), 025008.
- M. Goliath and G. F. R. Ellis, Homogeneous cosmologies with a cosmological constant. Phys. Rev. D 60 (1999), 023502.
- M. P. Hobson, G. P. Efstathiou and A. N. Lasenby, General Relativity: An Introduction for Physicists. Cambridge University Press, 2006.
- A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000.
- A. J. Lotka, UNDAMPED OSCILLATIONS DERIVED FROM THE LAW OF MASS ACTION. J. Am. Chem. Soc. 42 (1920), 1595-1599.
- Ž. Mijajlović and D. Branković, Algebraic dependencies and representations of cosmological parameters. Publ. Astron. Obs. Belgrade 100 (2021), 295-300.
- J. Perez, A. Füzfa, T. Carletti, L. Mélot and L. Guedezounme, The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework. Gen. Relativ. Gravit. 46 (2014), 1753.
- A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 1996.
- J.-P. Uzan and R. Lehoucq, A dynamical study of the Friedmann equations. Eur. J. Phys. 22 (2001), 371.
- V. Volterra, Fluctuations in the Abundance of a Species considered Mathematically. Nature 118 (1926), 558-560.