Have a personal or library account? Click to login
The eigenspaces of twisted polynomials over cyclic field extensions Cover
By: Adam Owen and  Susanne Pumplün  
Open Access
|Feb 2023

References

  1. [1] A. S. Amitsur, Non-commutative cyclic fields. Duke Math. J. 21 (1954), 87-105.
  2. [2] A.S.Amitsur, Differential Polynomials and Division Algebras. Annals of Mathematics, Vol. 59 (2) (1954) 245-278.10.2307/1969691
  3. [3] A. S. Amitsur, Generic splitting fields of central simple algebras. Ann. of Math. 62 (2) (1955), 8-43.10.2307/2007098
  4. [4] C. Brown, S. Pumplün, How a nonassociative algebra reflects the properties of a skew polynomial. Glasgow Math. J. 63 (2021) (1), 6-26. https://doi.org/10.1017/S001708951900047810.1017/S0017089519000478
  5. [5] C. Brown Petit algebras and their automorphisms, PhD Thesis, University of Nottingham, 2018. Online at arXiv:1806.00822 [math.RA]
  6. [6] L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7 (3) (1906), 370-390.10.1090/S0002-9947-1906-1500755-5
  7. [7] M. Giesbrecht, Factoring in skew-polynomial rings over finite fields. J. Symbolic Comput. 26 (4) (1998), 463-486.10.1006/jsco.1998.0224
  8. [8] M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore polynomials over 𝔽q(t). Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, 127-134, ACM, New York, 2003.
  9. [9] J. Gòmez-Torrecillas, P. Kutas, F. J. Lobillo, G. Navarro, Primitive idempotents in central simple algebras over 𝔽q(t) with an application to coding theory. Online at arXiv:2006.12116 [math.RA]
  10. [10] J. Gòmez-Torrecillas, F. J. Lobillo,; G. Navarro, Computing the bound of an Ore polynomial. Applications to factorization. J. Symbolic Comput. 92 (2019), 269-297.
  11. [11] J. Gòmez-Torrecillas, F. J. Lobillo, G. Navarro, Factoring Ore polynomials over 𝔽q(t) is difficult. Online at arXiv:1505.07252[math.RA]
  12. [12] J. Gòmez-Torrecillas, Basic module theory over non-commutative rings with computational aspects of operator algebras. With an appendix by V. Levandovskyy. Lecture Notes in Comput. Sci. 8372, Algebraic and algorithmic aspects of differential and integral operators, Springer, Heidelberg (2014) 23-82.
  13. [13] N. Jacobson, “Finite-dimensional division algebras over fields.” Springer Verlag, Berlin-Heidelberg-New York, 1996.10.1007/978-3-642-02429-0
  14. [14] N. Jacobson, “The theory of rings.” American Mathematical Soc., 194310.1090/surv/002
  15. [15] M. Lavrauw, J. Sheekey, Semifields from skew-polynomial rings.Adv. Geom. 13 (4) (2013), 583-604.10.1515/advgeom-2013-0003
  16. [16] A. Owen, On the eigenspaces of certain classes of skew polynomials. PhD Thesis, University of Nottingham, 2022.
  17. [17] J.-C. Petit, Sur certains quasi-corps généralisant un type d’anneau-quotient.Séminaire Dubriel. Algèbre et théorie des nombres 20 (1966-67), 1-18.
  18. [18] J.-C. Petit, Sur les quasi-corps distributifesà base momogène.C.R.Acad. Sc. Paris 266 (1968), Série A, 402-404.
  19. [19] R. D. Schafer, “An Introduction to Nonassociative Algebras.” Dover Publ., Inc., New York, 1995.
  20. [20] J. Sheekey New semifields and new MRD codes from skew polynomial rings, September 2019 Journal of the LMS, DOI: 10.1112/jlms.1228110.1112/jlms.12281
  21. [21] T. J. Sullivan, C. Hajarnavis, Rings and Modules, Lecture Notes 2004, online at http://www.tjsullivan.org.uk/pdf/MA377Ringsand Modules.pdf
  22. [22] D. Thompson, S. Pumplün, The norm of a skew polynomial,J. Algebra and Representation Theory, https://doi.org/10.1007/s10468-021-10051-z10.1007/s10468-021-10051-z
DOI: https://doi.org/10.2478/auom-2023-0012 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 221 - 240
Submitted on: Jun 17, 2022
Accepted on: Sep 20, 2022
Published on: Feb 4, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Adam Owen, Susanne Pumplün, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.