References
- [1] A. S. Amitsur, Non-commutative cyclic fields. Duke Math. J. 21 (1954), 87-105.
- [2] A.S.Amitsur, Differential Polynomials and Division Algebras. Annals of Mathematics, Vol. 59 (2) (1954) 245-278.10.2307/1969691
- [3] A. S. Amitsur, Generic splitting fields of central simple algebras. Ann. of Math. 62 (2) (1955), 8-43.10.2307/2007098
- [4] C. Brown, S. Pumplün, How a nonassociative algebra reflects the properties of a skew polynomial. Glasgow Math. J. 63 (2021) (1), 6-26. https://doi.org/10.1017/S001708951900047810.1017/S0017089519000478
- [5] C. Brown Petit algebras and their automorphisms, PhD Thesis, University of Nottingham, 2018. Online at arXiv:1806.00822 [math.RA]
- [6] L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7 (3) (1906), 370-390.10.1090/S0002-9947-1906-1500755-5
- [7] M. Giesbrecht, Factoring in skew-polynomial rings over finite fields. J. Symbolic Comput. 26 (4) (1998), 463-486.10.1006/jsco.1998.0224
- [8] M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore polynomials over 𝔽q(t). Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, 127-134, ACM, New York, 2003.
- [9] J. Gòmez-Torrecillas, P. Kutas, F. J. Lobillo, G. Navarro, Primitive idempotents in central simple algebras over 𝔽q(t) with an application to coding theory. Online at arXiv:2006.12116 [math.RA]
- [10] J. Gòmez-Torrecillas, F. J. Lobillo,; G. Navarro, Computing the bound of an Ore polynomial. Applications to factorization. J. Symbolic Comput. 92 (2019), 269-297.
- [11] J. Gòmez-Torrecillas, F. J. Lobillo, G. Navarro, Factoring Ore polynomials over 𝔽q(t) is difficult. Online at arXiv:1505.07252[math.RA]
- [12] J. Gòmez-Torrecillas, Basic module theory over non-commutative rings with computational aspects of operator algebras. With an appendix by V. Levandovskyy. Lecture Notes in Comput. Sci. 8372, Algebraic and algorithmic aspects of differential and integral operators, Springer, Heidelberg (2014) 23-82.
- [13] N. Jacobson, “Finite-dimensional division algebras over fields.” Springer Verlag, Berlin-Heidelberg-New York, 1996.10.1007/978-3-642-02429-0
- [14] N. Jacobson, “The theory of rings.” American Mathematical Soc., 194310.1090/surv/002
- [15] M. Lavrauw, J. Sheekey, Semifields from skew-polynomial rings.Adv. Geom. 13 (4) (2013), 583-604.10.1515/advgeom-2013-0003
- [16] A. Owen, On the eigenspaces of certain classes of skew polynomials. PhD Thesis, University of Nottingham, 2022.
- [17] J.-C. Petit, Sur certains quasi-corps généralisant un type d’anneau-quotient.Séminaire Dubriel. Algèbre et théorie des nombres 20 (1966-67), 1-18.
- [18] J.-C. Petit, Sur les quasi-corps distributifesà base momogène.C.R.Acad. Sc. Paris 266 (1968), Série A, 402-404.
- [19] R. D. Schafer, “An Introduction to Nonassociative Algebras.” Dover Publ., Inc., New York, 1995.
- [20] J. Sheekey New semifields and new MRD codes from skew polynomial rings, September 2019 Journal of the LMS, DOI: 10.1112/jlms.1228110.1112/jlms.12281
- [21] T. J. Sullivan, C. Hajarnavis, Rings and Modules, Lecture Notes 2004, online at http://www.tjsullivan.org.uk/pdf/MA377Ringsand Modules.pdf
- [22] D. Thompson, S. Pumplün, The norm of a skew polynomial,J. Algebra and Representation Theory, https://doi.org/10.1007/s10468-021-10051-z10.1007/s10468-021-10051-z