Have a personal or library account? Click to login
Predictability and uniqueness of weak solutions of the stochastic differential equations Cover

Predictability and uniqueness of weak solutions of the stochastic differential equations

By: Ana Merkle  
Open Access
|Feb 2023

References

  1. [1] P. Bremaud, M. Yor, Changes of Filtration and of Probability Measures, Z. Wahrscheinlichkeitstheorie verw. Gebiete 45, 269–295, (1978).10.1007/BF00537538
  2. [2] C. Dellacherie, P.A. Meyer, Probability and Potentials B, Theory of Martingales. Blaisdell Publishing Company, Waltham, Mass (1982).
  3. [3] R.J. Elliot, Stochastic calculus and applications. Springer-Verlag, New York (1982).
  4. [4] J.P. Florens, D. Fougères, Noncausality in continuous time. Econometrica, 64(5), (1996), 1195–1212.10.2307/2171962
  5. [5] J.P. Florens, M. Mouchart, A Note on Noncausality. Econometrica, 50(3), (1982), 583–591.10.2307/1912602
  6. [6] J.P. Florens, M. Mouchart, J. M.Rolin, Elements of Bayesian statistics. Pure and Applied Mathematics, A Series of Monographs and Textbooks, Marcel Dekker inc, New York and Basel (1990).
  7. [7] C.W.J. Granger, Investigating Causal Relations by Econometric Models and Cross Spectral Methods. Econometrica 37, (1969), 424–438.10.2307/1912791
  8. [8] J. Jacod, Weak and strong solutions of stochastic differential equations. Stochastics 3, (1980), 171-191.10.1080/17442508008833143
  9. [9] J. Jacod, J. Memin, Existence of weak solutions for stochastic differential equation with driving semimartingales. Stochastics 4, (1981), 317-337.10.1080/17442508108833169
  10. [10] G. Kallianpur, Stochastic filtering theory. Springer-Verlag, New York (1980).10.1007/978-1-4757-6592-2
  11. [11] V.A. Lebedev, On the existence of weak solutions for stochastic differential equations with driving martingales and random measures. Stochastics 9, (1981), 37-76.10.1080/17442508308833247
  12. [12] R.S. Liptser, A.N. Shiryayev, Statistics of random processes I. Springer-Verlag, New York. (1979)10.1007/978-1-4757-4293-0
  13. [13] X. Mao, Stochastic differential equations and applications, Horwood Publishing, Chichester, (2008).10.1533/9780857099402
  14. [14] M. Mouchart, J.M. Rolin, A note on conditional independence with statistical applications. Statistica 44(4), (1985), 557–584.
  15. [15] P.A. Mykland, Statistical Causality. Report No.14. University of Bergen, (1986), 1–26.
  16. [16] P.A. Mykland, Stable Subspaces Over Regular Solutions of Martingale Problems. Report No.15. University of Bergen, (1986), 1–14.
  17. [17] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer (2013).
  18. [18] Yu. A. Rozanov, Theory of Innovation Processes, Monographs in Probabolity Theory and Mathematical Statistics. Izdat. Nauka, Moscow (1974).
  19. [19] J. H. Schuppen, Control and System Theory of Discrete-Time Stochastic Systems, Springer (2021).10.1007/978-3-030-66952-2
  20. [20] D.W. Strook, M. Yor, On Extremal Solutions of Martingale Problems, Am.Scient, Escole Norm. Sup.,13, (1980), 95-164.10.24033/asens.1378
  21. [21] D. Valjarević, A. Merkle, Statistical causality and measurable separability of σ-algebras. Statistics and Probability Letters, Elsevier. vol. 177(C) (2021).10.1016/j.spl.2021.109166
DOI: https://doi.org/10.2478/auom-2023-0011 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 207 - 219
Submitted on: Apr 7, 2022
Accepted on: Sep 15, 2022
Published on: Feb 4, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Ana Merkle, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.