Have a personal or library account? Click to login
On the torsional energy of torus knots under infinitesimal bending Cover

References

  1. [1] J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, De W. Sumners, J. Roca, DNA knots reveal a chiral organization of DNA in phage capsids, PNAS USA, 102, 9165-9169, (2005).10.1073/pnas.0409323102116658815958528
  2. [2] O. Belova, J. Mikeš, M. Sherkuziyev, N. Sherkuziyeva, An analytical inflexibility of surfaces attached along a curve to surface regarding a point and plane, Rusults in Math., 76, 56, (2021).10.1007/s00025-021-01362-0
  3. [3] R. Capovilla, C. Chryssomalakos, J. Guven, Hamiltonians for curves, J. Phys.A:Math. Gen., 35(31), 65-71, (2002).
  4. [4] B.D. Coleman, D. Swigon, Theory of self-contact in Kirchhoff rods with applications to supercoiling of knotted and unknotted DNA plasmids, Phil.Trans.R.Soc.Lond. A, 362, 1281-1299, (2004).10.1098/rsta.2004.139315306451
  5. [5] N. Efimov, Kachestvennye voprosy teorii deformacii poverhnostei, UMN 3.2, 47-158, (1948).
  6. [6] U. Gözütok, HA. Coban, Y. Sağiroğlu, Ruled surfaces obtained by bending of curves, Turk.J.Math., 44(1), 300-306, (2020).10.3906/mat-1908-21
  7. [7] I. Hinterleitner, J. Mikeš, J. Stranska, Infinitesimal F-planar transformations, Russ. Math., 52(4), 13-18, (2008).10.3103/S1066369X08040026
  8. [8] V. Katritch, J. Bednar, D. Michoud, R.G. Scharein, J. Dubochet, A. Stasiak, Geometry and physics of knots, Nature, 384, 142-145, (1996).10.1038/384142a0
  9. [9] L. Kauffman, Lj. Velimirović, M. Najdanović, S. Rančić, Infinitesimal bending of knots and energy change, J. Knot Theo. Ramifications, 28(11), 1940009, (2019).10.1142/S0218216519400091
  10. [10] F. Maggioni, S.Z. Alamri, C.F. Barenghi, R.L. Ricca, Velocity, energy and helicity of vortex knots and unknots, Phys. Rev. E, 82, 26309-26317, (2010).10.1103/PhysRevE.82.02630920866907
  11. [11] M. Maksimović, Flexibility of curves on a single-sheet hyperboloid, J. Eng. Math., 123, 19-27, (2020).10.1007/s10665-020-10048-5
  12. [12] M. Maksimović, Lj. Velimirović, M. Najdanović, Infinitesimal bending of DNA helices, Turk.J.Math., 45(1), 520-528, (2021).10.3906/mat-2003-106
  13. [13] H.K. Moffat, The energy spectrum of knots and links, Nature, 347, (1990).10.1038/347367a0
  14. [14] M. Najdanović, Infinitesimal bending influence on the Willmore energy of curves, Filomat, 29(10), 2411-2419, (2015).10.2298/FIL1510411N
  15. [15] M. Najdanović, Lj. Velimirović, On the Willmore energy of curves under second order infinitesimal bending, Miskolc Math. Notes, 17(2), 979-987, (2017).10.18514/MMN.2017.2133
  16. [16] M. Najdanović, Lj. Velimirović, Infinitesimal bending of curves on the ruled surfaces, The University Thought - Publication in Natural Sciences, 8(1), 46-51, (2018).10.5937/univtho8-17403
  17. [17] M. Najdanović, S. Rančić, L. Kauffman, Lj. Velimirović, The total curvature of knots under second-order infinitesimal bending, J. Knot Theo. Ramifications, 28(1), 1950005, (2019).10.1142/S0218216519500056
  18. [18] C. Oberti, R.L. Ricca, On torus knots and unknots, J. Knot Theo. Ramifications, 25(6), 1650036, (2016).10.1142/S021821651650036X
  19. [19] C. Oberti, R.L. Ricca, Induction effects of torus knots and unknots, J. Phys. A: Math. Theor., 50, 365501, (2017).
  20. [20] D. Proment, M. Onorato, C.F. Barenghi, Vortex knots in a Bose- Einstein condensate, Phys. Rev. E, 85, 036306, (2012).10.1103/PhysRevE.85.03630622587179
  21. [21] D. Reith, P. Cifra, A. Stasiak,P. Virnau, Effective stiffening of DNA due to nematic ordering causes DNA molecules packed in phage capsids to preferentially form torus knots, Nucleic Acids Res., 22, 1-9, (2012).10.1093/nar/gks157336719322362732
  22. [22] L. RýparováL,J.Mikeš, Infinitesimal rotary transformation, Filomat -The 20th Geometrical Seminar 2018, 33(4), 1153-1157, (2019).10.2298/FIL1904153R
  23. [23] I. Vekua, Obobschennye Analiticheskie Funkcii, Moskva, (1959).
  24. [24] Lj. Velimirović, Change of geometric magnitudes under infinitesimal bending, Facta Univ., 3(11), 135-148, (2001).
  25. [25] Lj. Velimirović, Infinitesimal bending, Faculty Sci. Math.,Niš, 2009. ISBN 86-83481-42-5.
  26. [26] Lj. Velimirović, M.Ćirić, M. Cvetković, Change of the Willmore energy under infinitesimal bending of membranes, Comput. Math. with Appl., 59(12), 3679-3686, (2010).10.1016/j.camwa.2010.03.069
  27. [27] Lj. Velimirović, M.Ćirić, N. Velimirović, On the Willmore energy of shells under infinitesimal deformations, Comput. Math. with Appl., 61(11), 3181-3190, (2011).10.1016/j.camwa.2011.03.035
  28. [28] Lj. Velimirović, M. Cvetković, M.Ćirić, N. Velimirović, Analysis of Gaudi surfaces at small deformations, Appl. Math. Comput., 218, 6999-7004, (2012).10.1016/j.amc.2011.12.005
DOI: https://doi.org/10.2478/auom-2023-0009 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 181 - 197
Submitted on: Feb 19, 2022
Accepted on: Apr 21, 2022
Published on: Feb 4, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Miroslav D. Maksimović, Svetozar R. Rančić, Marija S. Najdanović, Ljubica S. Velimirović, Eugen S. Ljajko, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.