Have a personal or library account? Click to login
Skew-symmetric matrices related to the vector cross product in ℂ7 Cover
Open Access
|Feb 2023

References

  1. [1] P. D. Beites, P. Catarino, On the Leonardo quaternion sequence. (2021), submitted.
  2. [2] P. D. Beites, A. P. Nicolás, A note on standard composition algebras of types II and III. Advances in Applied Clifford Algebras 27 (2017), 955–964.
  3. [3] P. D. Beites, A. P. Nicolás, P. Saraiva, J. Vitória, Vector cross product differential and difference equations in ℝ3 and in ℝ7. Electronic Journal of Linear Algebra 34 (2018), 675–686.
  4. [4] P. D. Beites, A. P. Nicolás, J. Vitória, On skew-symmetric matrices related to the vector cross product in ℝ7. Electronic Journal of Linear Algebra 32 (2017), 138–150.
  5. [5] P. D. Beites, A. P. Nicolás, J. Vitória, Arithmetic for closed balls. Quaestiones Mathematicae 45 (2022), 1459-1471.10.2989/16073606.2021.1949402
  6. [6] A. Ben-Israel, T. N. E. Greville, Generalized Inverses. Springer, New York, 2003.
  7. [7] R. B. Brown, A. Gray, Vector cross products. Commentarii Mathematici Helvetici 42 (1967), 222–236.10.1007/BF02564418
  8. [8] S. L. Campbell, C. D. Meyer, Generalized Inverses of Linear Transformations. SIAM, Philadelphia, 2009.10.1137/1.9780898719048
  9. [9] P. Catarino, J. Vitória, Projeç˜oes e distâncias em ℝ7, duplo produto vetorial e hiperplanos associados. Boletim da Sociedade Portuguesa de Matemática 70 (2014), 15–33.
  10. [10] C. Costa, M. A. Facas Vicente, P. D. Beites, F. Martins, R. Serôdio, P. Tadeu, Produto vectorial em ℝ7: Projecção de um ponto sobre uma recta. Boletim da Sociedade Portuguesa de Matemática 62 (2010), 19–35.
  11. [11] F. R. Dias Agudo, Introdução àÁlgebra Linear e Geometria Analítica. Escolar Editora, Lisboa, 1992.
  12. [12] B. Eckmann, Stetige lösungen linearer gleichungssysteme. Commentarii Mathematici Helvetici 15 (1942), 318–339.10.1007/BF02565648
  13. [13] A. Elduque, Vector cross products. Talk presented at the Seminario Rubio de Francia of the Universidad de Zaragoza (2004), http://www.unizar.es/matematicas/algebra/elduque/Talks/crossproducts.pdf
  14. [14] B. L. M. Ferreira, I. Kaygorodov, K. Kudaybergenov, Local and 2-local derivations of simple n-ary algebras. Ricerche di Matematica (2021), https://doi.org/10.1007/s11587-021-00602-310.1007/s11587-021-00602-3
  15. [15] C. Flaut, Some properties of the composition algebras. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica 11 (1) (2003), 93–100.
  16. [16] A. Gray, Vector cross produtcs. Rendiconti del Seminario Matematico Università Politecnico di Torino 35 (1976/77), 69–75.
  17. [17] J. Gross, G. Trenkler, S.-O. Troschke, The vector cross product in ℂ3.International Journal of Mathematical Education in Science and Technology 30 (1999), 549–555.
  18. [18] A. E. Guterman, S. A. Zhilina, On the lengths of standard composition algebras. Communications in Algebra 50 (3) (2022), 1092–1105.10.1080/00927872.2021.1977945
  19. [19] A. Hurwitz,Über die komposition der quadratischen formen von beliebig vielen variablen. Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse (1898), 309–316.
  20. [20] Kh. D. Ikramov, The vector product in a complex three-dimensional space, and the complex three-dimensional Lie algebra. (Russian) Vest-nik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., no. 2, (2002), 3–6, 50; translation in Moscow University Computational Mathematics and Cybernetics 2002, no. 2, (2003), 1–5.
  21. [21] N. Jacobson, Composition algebras and their automorphisms. Rendiconti del Circolo Matematico di Palermo 7 (1958), 55–80.
  22. [22] P. Lewintan, Matrix representation of a cross product and related curl-based differential operators in all space dimensions. Open Mathematics 19 (2021), 1330–1348.
  23. [23] K. Meyberg, Trace formulas in vector product algebras. Communications in Algebra 30 (2002), 2933–2940.
  24. [24] M. Rost, On the dimension of a composition algebra. Documenta Mathematica 1 (1996), 209–214.10.4171/dm/10
  25. [25] G. Trenkler, The vector cross product from an algebraic point of view. Discussiones Mathematicae. General Algebra and Applications 21 (2001), 67–82.
  26. [26] G. Trenkler, D. Trenkler, The vector cross product and 4 × 4 skew-symmetric matrices. In: C. R. Rao, H. Toutenburg, H. C. Shalabh (editors), Recent Advances in Linear Models and Related Areas, Springer, Berlin, 95–104, 2008.10.1007/978-3-7908-2064-5_6
  27. [27] G. W. Whitehead, Note on cross-sections in Stiefel manifolds. Commentarii Mathematici Helvetici 37 (1962/1963), 239–240.
DOI: https://doi.org/10.2478/auom-2023-0003 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 47 - 69
Submitted on: Apr 5, 2022
Accepted on: Jul 15, 2022
Published on: Feb 4, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 P. D. Beites, A. P. Nicolás, José Vitória, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.