Have a personal or library account? Click to login
On some links between the generalised Lucas pseudoprimes of level k Cover
Open Access
|Feb 2023

References

  1. [1] T. Andreescu, D. Andrica, Number Theory. Structures, Examples, and Problems, Birkhauser Verlag, Boston-Berlin-Basel (2009)
  2. [2] D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems, Springer (2020)10.1007/978-3-030-51502-7
  3. [3] D. Andrica, O. Bagdasar, On some arithmetic properties of the generalised Lucas sequences,Med.J.Math. 18, Article 47 (2021)10.1007/s00009-020-01653-w
  4. [4] D. Andrica, O. Bagdasar, Pseudoprimality related to the generalised Lucas sequences, Math. Comput. Simul., 201, 528–542 (2022)
  5. [5] D. Andrica, O., Bagdasar, On Generalised Lucas Pseudoprimality of Level k, Mathematics, 9(8), 838 (2021)10.3390/math9080838
  6. [6] D. Andrica, O. Bagdasar, M. Th. Rassias, Weak pseudoprimality associated to the generalized Lucas sequences, In: Approximation and Computation in Science and Engineering, 53–75. Eds. N. J., Daras, Th. M., Rassias, Springer, Cham (2022)10.1007/978-3-030-84122-5_4
  7. [7] D. Andrica, O. Bagdasar, G. C. T¸urcaş, On some new results for the generalized Lucas sequences, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., XXIX(1), 17–36 (2021)10.2478/auom-2021-0002
  8. [8] D. Andrica, V. Crişan, F. Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab J. Math. Sci. 24(1), 9–15 (2018)10.1016/j.ajmsc.2017.06.002
  9. [9] P. S. Bruckman, On the infinitude of Lucas pseudoprimes, Fibonacci Quart. 32(2), 153–154 (1994)
  10. [10] K.-W. Chen, Y.-R. Pan, Greatest common divisors of shifted Horadam sequences, J. Integer Sequences, 23, Article 20.5.8 (2020)
  11. [11] G. Everest, A. van der Poorten, I. Shparlinski, T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs 104, American Mathematical Society, Providence, U.S.A. (2003)10.1090/surv/104
  12. [12] J. Grantham, Frobenius pseudoprimes,Math. Comp., 70, 873–891 (2000)
  13. [13] J. Grantham, Proof of two conjectures of Andrica and Bagdasar,INTEGERS, 21, Article A111 (2021) Vol. 3, Addison Wesley, Second Edition (2003)
  14. [14] E. Lehmer, On the infinitude of Fibonacci pseudoprimes, Fibonacci Quart. 2(3), 229–230 (1964)
  15. [15] P. Mihăilescu, M. Th. Rassias, Public key cryptography, number theory and applications, EMS Newsletter 86, 25–30 (2012)
  16. [16] P. Mihăilescu, M. Th. Rassias, Computational number theory and cryptography, In: Applications of Mathematics and Informatics in Science and Engineering, 349–373. Ed. N. J. Daras, Springer (2014)10.1007/978-3-319-04720-1_22
  17. [17] The On-Line Encyclopedia of Integer Sequences, http://oeis.org, OEIS Foundation Inc. 2011.
  18. [18] A. Rotkiewicz, Lucas and Frobenius pseudoprimes, Ann. Math. Sil. 17, 17–39 (2003)
  19. [19] B. Tams,M.Th. Rassias,P.Mihăilescu, Current challenges for IT security with focus on Biometry, In: Computation, Cryptography, and Network Security, 461–491. Ed. N. J. Daras, M. T. Rassias, Springer (2015)10.1007/978-3-319-18275-9_21
  20. [20] H. C. Williams, Edouard Lucas and Primality Testing, Wiley-Blackwell (2011)
DOI: https://doi.org/10.2478/auom-2023-0002 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 23 - 46
Submitted on: Jul 1, 2022
Accepted on: Sep 30, 2022
Published on: Feb 4, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Dorin Andrica, Ovidiu Bagdasar, Michael Th. Rassias, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.