Have a personal or library account? Click to login
Ramanujan-type congruences modulo 4 for partitions into distinct parts Cover
By: Mircea Merca  
Open Access
|Oct 2022

References

  1. [1] G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
  2. [2] A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967) 14–32.10.1017/S0017089500000045
  3. [3] B. C. Berndt and K. Ono, Ramanujan’s unpublished manuscipt on the partition and tau functions with proofs and commentary, Sém. Lothar. Combin. 42 (1999), Art. B42c.
  4. [4] B. Gordon and K. Hughes, Ramanujan congruences for q(n), In: Knopp M. I. (eds) Analytic Number Theory. Lecture Notes in Mathematics, vol 899, pp. 333–359, Springer, Berlin, Heidelberg, 1981.10.1007/BFb0096473
  5. [5] B. Gordon and K. Ono, Divisibility of Certain Partition Functions by Powers of Primes, Ramanujan J 1 (1997) 25–34.10.1023/A:1009711020492
  6. [6] M. D. Hirschhorn, The number of representation of a number by various forms involving triangles, squares, pentagons and octagons, in Ramanujan Rediscovered, N.D. Baruah, B.C. Berndt, S. Cooper, T. Huber, and M. Schlosser, Eds., RMS Lecture Note Series, No. 14, pp. 113124, Ramanujan Mathematical Society, 2010.
  7. [7] O. Kolberg, Some identities involving the partition function, Math. Scand. 5 (1957) 77–92.10.7146/math.scand.a-10492
  8. [8] M. Merca, Fast algorithm for generating ascending compositions, J. Math. Model. Algorithms 11 (2012) 89–104.10.1007/s10852-011-9168-y
  9. [9] M. Merca, Binary diagrams for storing ascending compositions, Comput. J. 56(11) (2013) 1320–1327.10.1093/comjnl/bxs111
  10. [10] M. Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, J. Number Theory 160 (2016) 60–75.10.1016/j.jnt.2015.08.014
  11. [11] M. Merca, Linear inequalities concerning partitions into distinct parts, Ramanujan J (2021). https://doi.org/10.1007/s11139-021-00427-6.
  12. [12] M. Merca, Distinct partitions and overpartitions, Carpathian J. Math. 38(1) (2022) 149–158.10.37193/CJM.2022.01.12
  13. [13] K. Ono and D. Penniston, The 2-adic behavior of the number of partitions into distinct parts, J. Combin. Theory Ser. A, 92 (2000) 138–157.
  14. [14] C.-S. Radu, An algorithmic approach to Ramanujan-Kolberg identities, J. Symbolic Comput. 68 (2015) 225–253.10.1016/j.jsc.2014.09.018
  15. [15] S. Ramanujan, Some Properties of p(n), the number of partitions of n, Math. Proc. Cambridge Philos. Soc., 207–210 (1919).
  16. [16] S. Ramanujan, Congruence Properties of Partitions, Proc. Lond. Math. Soc., 2(18) (1920).10.1007/BF01378341
  17. [17] N. A. Smoot, On the computation of identities relating partition numbers in arithmetic progressions with eta quotients: an implementation of Radu’s algorithm, J. Symb. Comput. 104 (2021) 276–311.
  18. [18] G. N. Watson, Ramanujan’s vermutungüber zerfällungsanzahlen, J. reine angew. math. 179 (1938) 97–128.10.1515/crll.1938.179.97
DOI: https://doi.org/10.2478/auom-2022-0040 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 185 - 199
Submitted on: Dec 4, 2021
Accepted on: Apr 15, 2022
Published on: Oct 8, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Mircea Merca, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.