Have a personal or library account? Click to login
Some general Gompertz and Gompertz-Makeham life expectancy models Cover
Open Access
|Oct 2022

References

  1. [1] Abramowitz, M. and Stegun, I.A. (Eds.) (1965) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications Inc., New York, 1046 p.
  2. [2] Bakouch, H.S., Abd El-Bar, A.M.T. (2017), A new weighted Gompertz distribution with applications to reliability data, Applications of Mathematics, Vol. 62(3), 269–296.10.21136/AM.2017.0277-16
  3. [3] Bantan, R.A.R., Jamal, F., Chesneau, C., Elgarhy, M. (2021), Theory and Applications of the Unit Gamma/Gompertz Distribution, Mathematics, 9(16), 1850.10.3390/math9161850
  4. [4] Bncescu, I. (2018), Some classes of statistical distributions. Properties and Applications, An. t. Univ. Ovidius Constana, Vol. 26(1), 43–68.10.2478/auom-2018-0002
  5. [5] Beard, R.E. (1959) Note on Some Mathematical Mortality Models. The Lifespan of Animals, Wolstenholme, G.E.W. and OConner, M., Eds., Ciba Foundation Colloquium on Ageing, Little, Brown and Company, Boston, 302–311.10.1002/9780470715253.app1
  6. [6] Berihuete, A., Sanchez-Sanchez, M., Suarez-Llorens, A. (2021), A Bayesian Model of Covid-19 Cases Based on the Gompertz Curve, Mathematics, 9(3), 228.10.3390/math9030228
  7. [7] Castellares, F., Patricio, S.C., Lemonte, A.J. (2020), On gamma-Gompertz life expectancy, Statistics and Probability Letters, Vol. 165, issue C.10.1016/j.spl.2020.108832
  8. [8] Damodaran, S., Irshad, M.R. (2016), Extended New Generalized Lindley Distribution, Statistica, Vol. 1.
  9. [9] Deniz, E.G., Ojeda, E.C. (2011), The discrete Lindley distribution properties and applications. Journal of Statistical Computation and Simulation, 81, 1405–1416.10.1080/00949655.2010.487825
  10. [10] Dragan, M., (2021) LindleyGompertz and LindleyGompertzMakeham life expectancies, International Journal of Risk Theory, Bucuresti, Vol. 1.
  11. [11] Ekhosuehi, N., Opone, F. (2018), A Three Parameter Generalized Lindley Distribution: Properties and Application, Statistica, Vol. 78 (3).
  12. [12] Elbatal I., Merovci F., Elgarhy M. (2013), A new generalized Lindley distribution, Mathematical Theory and Modeling, Vol.3 (3).
  13. [13] Ghitany M.E., Alqallaf F., Al-Mutairi D.K., Husain H.A. (2011), A two-parameter weighted Lindley distribution and its applications to survival data, Mathematics and Computers in Simulation 81 (6), 1190–1201.10.1016/j.matcom.2010.11.005
  14. [14] Ghitany, M.E., Atieh, B., Nadarajah, S. (2008), Lindley distribution and its application, Mathematics and Computers in Simulation, Vol. 78 (4), 493–506.10.1016/j.matcom.2007.06.007
  15. [15] Gompertz, B., (1825), On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philosophical Transactions of the Royal Society of London 115, 513583.10.1098/rstl.1825.0026
  16. [16] Hokov-Mayerov, S., Flaut, C., Maturo, F. (2021), Chapter Life Expectancy at Birth and Its Socioeconomic Determinants: An Application of Random Forest Algorithm from Algorithms as a Basis of Modern Applied Mathematics, Springer, Vol. 404, part of the Studies in Fuzziness and Soft Computing book series (StudFuzz).
  17. [17] Kirkwood, T., (1985), Comparative and evolutionary aspects of longevity, Finch, C., Schneider, E. (Eds.), Handbook of the Biology of Aging. Van Nostrand Reinhold Company, New York, 2743.
  18. [18] Lindley, D., V., (1958), Fiducial Distributions and Bayes’ Theorem, Journal of the Royal Statistical Society: Series B (Methodological), Vol 20 (1).10.1111/j.2517-6161.1958.tb00278.x
  19. [19] Makeham, W. (1860), On the law of mortality and the construction of annuity tables, Journal of the Institute of Actuaries 8, 301310.10.1017/S204616580000126X
  20. [20] Mazucheli, J., Achcar, J., A. (2011), The Lindley distribution applied to competing risks lifetime data, Computer Methods and Programs in Biomedicine, 104, 188–192.10.1016/j.cmpb.2011.03.006
  21. [21] Missov, T.I. (2013), Gamma-Gompertz life expectancy at birth, Demographic Research, Vol. 28, Article. 9, 259–270.10.4054/DemRes.2013.28.9
  22. [22] Nedjar, S., Zeghdoudi, H. (2016) On gamma Lindley distribution: Properties and simulation, Journal of Computational and Applied Mathematics, Vol. 298, 167–174.10.1016/j.cam.2015.11.047
  23. [23] Shanker, R., Sharma, S., Shanker, R. (2013), A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics, Vol. 4, 363–368.10.4236/am.2013.42056
  24. [24] Vaupel, J., W., Manton, K.,G., Stallard, E. (1979), The impact of heterogeneity in individual frailty on the dynamics of mortality, Duke University Press, Demography Vol. 16 (3) (Aug.,1979), 439–454.10.2307/2061224
  25. [25] Zakerzadeh H., Dolati A. (2009), Generalized Lindley Distribution, Journal of Mathematical Extension, Vol. 3 (2).
  26. [26] Zeghdoudi, H., Nedjar, S. (2016), A pseudo Lindley distribution and application, Afrika Statistika, Vol. 11 (1).10.16929/as/2016.923.83
  27. [27] Zeghdoudi, H., Nedjar, S. (2016), Gamma Lindley distribution and its application, Journal of Applied Probability and Statistics, Vol. 11 (1), 129–138.10.16929/as/2016.923.83
  28. [28] Zeghdoudi, H., Nedjar, S. (2016), On Poisson pseudo Lindley distribution: Properties and application, New Trends in Mathematical Sciences, Vol. 1(5).10.20852/ntmsci.2017.126
DOI: https://doi.org/10.2478/auom-2022-0037 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 117 - 142
Submitted on: Oct 29, 2021
Accepted on: Jan 30, 2022
Published on: Oct 8, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Mihăiţă Drăgan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.