Have a personal or library account? Click to login
Operational matrix method to solve nonlinear reaction-advection-diffusion equation in fractional order system Cover

Operational matrix method to solve nonlinear reaction-advection-diffusion equation in fractional order system

By: E-M. Craciun and  M. Singh  
Open Access
|Oct 2022

References

  1. [1] G. Gurarslan and M. Sari, Numerical solutions of linear and nonlinear diffusion equations by a differential quadrature method(DQM), Communications in Numerical Methods in Engineering, 27 (2011), 69–77.
  2. [2] A. Sadighi and D.D. Ganji, Exact solutions of nonlinear diffusion equations by variational iteration method, Computers & Mathematics with Applications, 54 (2007), 1112–1121.10.1016/j.camwa.2006.12.077
  3. [3] A. Babaei and S. Banihashemi, Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction–diffusion– convection problem, Numerical Methods for Partial Differential Equations, 35 (2019), 976–992.10.1002/num.22334
  4. [4] L.L. Ferrás, N.J.Ford, M.L. Morgado and M. Rebelo,A numerical method for the solution of the time-fractional diffusion equation, International Conference on Computational Science and Its Applications, (2014), 117–131.10.1007/978-3-319-09144-0_9
  5. [5] J. Xie, Q. Huang and X. Yang, Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix, SpringerPlus, 5 (2016), 1149.10.1186/s40064-016-2832-y
  6. [6] S. Das, K. Vishal and P.K. Gupta, Solution of the nonlinear fractional diffusion equation with absorbent term and external force, Applied Mathematical Modelling, 35 (2011), 3970–3979.10.1016/j.apm.2011.02.003
  7. [7] M. Singh, S. Das, Rajeev and E.M. Craciun, Numerical solution of two-dimensional nonlinear fractional order reaction-advection-diffusion equation by using collocation method, Analele Universitatii “Ovidius” Constanta-Seria Matematica, 29 (2021), 211–230.10.2478/auom-2021-0027
  8. [8] P. Pandey, S. Kumar and S. Das, Approximate analytical solution of coupled fractional order reaction-advection-diffusion equations, The European Physical Journal Plus, 134 (2019), 364.10.1140/epjp/i2019-12727-6
  9. [9] S. Kumar, P. Pandey, S. Das and E.M. Craciun, Numerical solution of two dimensional reaction–diffusion equation using operational matrix method based on Genocchi polynomial. Part I: Genocchi polynomial and operational matrix, Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci., 20(4) (2019), 393–399.
  10. [10] E.M. Craciun, S. Das, P. Pandey and S. Kumar, Numerical solution of two dimensional reaction–diffusion equation using operational matrix method based on Genocchi polynomial. Part II: Error bound and stability analysis, Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci., 21(2) (2020), 147–154.
  11. [11] W.M. Abd-Elhameed and Y.H. Youssri, Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives, Rom. J. Phys, 61 (2016), 795–813.
  12. [12] W.M. Abd-Elhameed and Y.H. Youssri, Generalized Lucas polynomial sequence approach for fractional differential equations, Nonlinear Dynamics, 89 (2017), 1341–1355.10.1007/s11071-017-3519-9
  13. [13] M. Razzaghi and S. Yousefi, The Legendre wavelets operational matrix of integration, International Journal of Systems Science, 32 (2001), 495–502.10.1080/00207720120227
  14. [14] E. Babolian, Z. Masouri and S. Hatamzadeh, New direct method to solve nonlinear Volterra-Fredholm integral and integro-differential equations using operational matrix with block-pulse functions, Progress in Electromagnetics Research, 8 (2008), 59–76.10.2528/PIERB08050505
  15. [15] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Computers & mathematics with applications, 59 (2010), 1326–1336.10.1016/j.camwa.2009.07.006
  16. [16] J.D. Villiers, Mathematics of approximation, Springer Science & Business Media, 1 (2012).10.2991/978-94-91216-50-3_4
  17. [17] A. Mardani, M.R. Hooshmandasl, M.H. Heydari and C. Cattani, A meshless method for solving the time fractional advection–diffusion equation with variable coefficients, Computers & mathematics with applications, 75 (2018), 122–133.10.1016/j.camwa.2017.08.038
DOI: https://doi.org/10.2478/auom-2022-0036 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 97 - 116
Submitted on: Dec 30, 2021
Accepted on: Mar 25, 2022
Published on: Oct 8, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 E-M. Craciun, M. Singh, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.