Have a personal or library account? Click to login
The spectral discretization of the second-order wave equation Cover

References

  1. [1] M. Abdelwahed, N. Chorfi, A posteriori analysis of the spectral element discretization of a non linear heat equation. Adv. Nonlinear Anal. 2021; 10: 477–490.10.1515/anona-2020-0140
  2. [2] M. Abdelwahed, N. Chorfi, On the convergence analysis of a time dependent elliptic equation with discontinuous coe cients. Adv. Nonlinear Anal. 2020; 9: 1145–1160.10.1515/anona-2020-0043
  3. [3] S. Adjerid, A posteriori finite element error estimation for second–order hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 191 (2002), 4699–4719.
  4. [4] A. Bergam, C. Bernardi, Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005), no. 251, 1117–1138.
  5. [5] C. Bernardi, Y. Maday, Spectral Methods. in Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions, eds., North–Holland, Amsterdam, 1997, pp. 209–485.10.1016/S1570-8659(97)80003-8
  6. [6] C. Bernardi, Y. Maday, F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques. Collection Mathématiques et Application, 45, Springer-Verlag, Paris, 2004.
  7. [7] W. Bangerth, R. Rannacher, Finite element approximation of the acoustic wave equation: error control and mesh adaptation. East-West J. Numer. Math. 7 (1999), 263–282.
  8. [8] W. Bangerth, R. Rannacher, Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9 (2001), 575–591.
  9. [9] C. Bernardi, E. Süli, Time and space adaptivity for the second-order wave equation. Math. Models Methods Appl. Sci. 15(2), 199–225 (2005)10.1142/S0218202505000339
  10. [10] A. Chaoui1, F. Ellaggoune2, A. Guezane-Lakoud, Full discretization of wave equation. Boundary Value Problems (2015) 2015:133 DOI 10.1186/s13661-015-0396-3
  11. [11] Y. Daikh, W. Chikouche, Spectral element discretization of the heat equation with variable di usion coe cient. HAL Id: hal-01143558, https://hal.archives-ouvertes.fr/hal-01143558, Apr 2015.
  12. [12] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, 1968.
  13. [13] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys., 54, 468–488 (1984).
  14. [14] E. Süli, A posteriori error analysis and global error control for adaptive finite volume approximations of hyperbolic problems. Numerical Analysis 1995 (Dundee 1995), 169–190, Pitman Res. Notes Math. Ser. 344. Longman, Harlow (1996).
  15. [15] E. Süli, A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In: D. Kröner, M. Ohlberger and C. Rohde (Eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering Volume 5, 123–194, Springer-Verlag (1998).
DOI: https://doi.org/10.2478/auom-2022-0031 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 20
Submitted on: Nov 12, 2021
Accepted on: Jan 25, 2022
Published on: Oct 8, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Mohamed Abdelwahed, Nejmeddine Chorfi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.