Have a personal or library account? Click to login
Solving Single Nesting Problem Using a Genetic Algorithm Cover

References

  1. [1] M. Abdel-Basset, G. Manogaran, L. Abdel-Fatah, and S. Mirjalili, An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems, Pers Ubiquit. Comput 22 (2018), 11171132.10.1007/s00779-018-1132-7
  2. [2] A. C. F. Alvim, C. C. Ribeiro, F. Glover, and D. J. Aloise, A hybrid improvement heuristic for the one-dimensional bin packing problem, https://leeds-faculty.colorado.edu/glover/TS%20-%20bin%20packing%20-%20Ceslso.pdf
  3. [3] A. Bărbulescu, C. Ş. Dumitriu, On the connection between the GEP Performances and the Time Series Properties, Mathematics 9(16) (2021), 1853, https://doi.org/10.3390/math9161853.10.3390/math9161853
  4. [4] A. Bărbulescu, C. Ş. Dumitriu, Mathematical aspects of the study of the cavitation in liquids, in Series on Mathematical Modelling of Environmental and Life Sciences Problems, Proceedings of the 4th Workshop, Sept. 2005, Constanta, Romania, S. Ion, G. Marinoschi, C. Popa (eds.), Ed. Academiei Romne, Bucureti (2006), 7-15.
  5. [5] A. Bărbulescu, C. Şerban, M.-L. Indrecan, Improving spatial interpolation quality. IDW versus a genetic algorithm, Water 13 (2021), 863, https://doi.org/10.3390/w13060863.10.3390/w13060863
  6. [6] A. Bărbulescu, C. Şerban, S. Caramihai, Assessing the soil pollution using a genetic algorithm, Romanian Journal of Physics 66(3-4) (2021), 806.
  7. [7] H. Ben Amor and J. Valério de Carvalho, Cutting Stock Problems. In: G. Desaulniers, J. Desrosiers, M. M. Solomon (eds), Column Generation. Springer, Boston, MA. (2005), 131-161.10.1007/0-387-25486-2_5
  8. [8] H. Cambazard and B. O’ Sullivan, Propagating the Bin Packing Constraint Using Linear Programming. In: D. Cohen (ed), Principles and Practice of Constraint Programming CP 2010. CP 2010. Lecture Notes in Computer Science, 6308. Springer, Berlin, Heidelberg, (2010), 129-136.
  9. [9] E. G. Co man Jr., J.Csirik, G. Galambos, S. Martello, and D. Vigo, Bin Packing Approximation Algorithms: Survey and Classification. In: P. Pardalos, D. Z. Du, R. Graham (eds), Handbook of Combinatorial Optimization. Springer, New York, NY. (2013), 455-531.10.1007/978-1-4419-7997-1_35
  10. [10] F.-L. Dragomir, G. Alexandrescu, Applications of artificial intelligence in the decision fundamentation, Bulletin of “Carol I” National Defence University 4(2) (2017), 56-61 (in Romanian).
  11. [11] F.-L. Dragomir, The modeling of the decisional problems, Bulletin of “Carol I” National Defence University, 01 (2017), 72-75.
  12. [12] F.-L. Dragomir, The axiomatic character of decision, Bulletin of “Carol I” National Defence University 4(2) (2017), 56-61.
  13. [13] C. Ş. Dumitriu, A. Bărbulescu, A method for the single direction nesting computation, The 7th Balkan Conference on Operational Research, BACOR 05, Constanta, May 2005, Romania, https://www.academia.edu/44635040/A_Method_for_the_Single_Direction_Nesting_Computation.
  14. [14] C. Ş. Dumitriu, A. Bărbulescu, Studies about the copper base alloys used in naval constructions modeling the loss mass in different media, Sitech, Craiova (2007).
  15. [15] S. Eilon and N. Christofides, The loading problem, Manag. Sci. 17(5) (1971), 259-278.10.1287/mnsc.17.5.259
  16. [16] H. Feng, H. Ni, R. Zhao, and X. Zhu, An Enhanced Grasshopper Optimization Algorithm to the Bin Packing Problem, J. Control Sci. Eng., 3894987 (2020).10.1155/2020/3894987
  17. [17] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Pearson Education, Singapore (2002).
  18. [18] M. S. Hung and J. R. Brown, An algorithm for a class of loading problems, Naval Res. Logist. Q. 25(2) (1978), 289-297.10.1002/nav.3800250209
  19. [19] M. Hyde, G. Ochoa, J. Vázquez-Rodriguez, and T. Curtois, A HyFlex Module for the One Dimensional Bin Packing Problem, (2011), http://www.asap.cs.nott.ac.uk/external/chesc2011/reports/BinPackingHyFlex.pdf.
  20. [20] J. Joines and C. Houck, On the Use of Non-Stationary Penalty Functions to Solve Constrained Optimization Problems with Genetic Algorithms, Proceedings of the 1st IEEE Conference on Evolutionary Computation, Orlando, 27-29 June 1994, 579-584.
  21. [21] S. Martello, Packing problems in one or more dimensions, (2018), http://www.or.deis.unibo.it/staff_pages/martello/Slides_Estoril_Martello.pdf.
  22. [22] S. Martello and P. Toth, Knapsack problems. Algorithms and Computer Implementation, John Willey & Sons, Chichester, West England (1990).
  23. [23] E. A. Mukhacheva, G. N. Belov, V. M. Kartack, and A. S. Mukhacheva, Linear one-dimensional cutting-packing problems: numerical experiments with the sequential value correction method (SVC) and a modified branch-and-bound method (MBB), Pesqui. Oper. 20(2) (2000), 153 - 168.10.1590/S0101-74382000000200002
  24. [24] C. Munien, S. Mahabeer, E. Dzitiro, S. Singh, S. Zungu, and A. El-Shamir Ezugwu, Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study, IEEE Access 8, 227438 (2020).
  25. [25] G. Scheithauer, Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches, Solution Methods, Springer International Publishing (2018).10.1007/978-3-319-64403-5_1
  26. [26] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Springer-Verlag Berlin Heidelberg (2008).
  27. [27] S. L. Yadav and A. Sohal, Comparative Study of Different Selection Techniques in Genetic Algorithm, Int. J. Eng. Sci. Math. 6(3) (2017), 174-180.
DOI: https://doi.org/10.2478/auom-2022-0029 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 259 - 272
Submitted on: Jun 15, 2021
Accepted on: Sep 25, 2021
Published on: Jun 2, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 C. Şerban, C.Ş. Dumitriu, A. Bărbulescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.