Have a personal or library account? Click to login
A result of instability for two-temperatures Cosserat bodies Cover
By: M. Marin,  S. Vlase and  I.M. Fudulu  
Open Access
|Jun 2022

References

  1. [1] Green, A.E., Lindsay, K.A., 1972, Thermoelasticity, J. Elasticity, 2, 1-710.1007/BF00045689
  2. [2] Lord, H., Shulman, Y., A Generalized Dynamical Theory of Thermoelasticity, J. Mech. Phys. Solids (ZAMP), 15 (1967), 299-30910.1016/0022-5096(67)90024-5
  3. [3] Green, A.E., Naghdi, P.M., On undamped heat waves in an elastic solid, J. Thermal Stresses, 15(1992), 253-264.10.1080/01495739208946136
  4. [4] Green, A.E., Naghdi, P.M., Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.10.1007/BF00044969
  5. [5] Green, A.E., Naghdi, P.M., A verified procedure for construction of theories of deformable media. I. Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua, Proc. Royal Soc. London A, 448 (1995), 335-356, 357-377, 378-388.10.1098/rspa.1995.0021
  6. [6] Quintanilla, R., Moore-Gibson-Thompson thermoelasticity with two temperatures, Appl. Eng. Sci., 1 (2020), 100006.10.1016/j.apples.2020.100006
  7. [7] Abbas, I., Marin, M., Analytical Solutions of a Two-Dimensional Generalized Thermoelastic Di usions Problem Due to Laser Pulse, Iran. J. Sci. Technol. - Trans. Mech. Eng., 42(1), 57-71, 201810.1007/s40997-017-0077-1
  8. [8] Chen, P.J., Gurtin, M.E., On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP), 19 (1968), 614-627.10.1007/BF01594969
  9. [9] Chen, P.J., et al., On the thermodynamics of non-simple materials with two temperatures, J. Appl. Math. Phys. (ZAMP), 20 (1969), 107-112.10.1007/BF01591120
  10. [10] Youssef, H.M., Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 37 (2006), 383-390.10.1093/imamat/hxh101
  11. [11] Magana, A., et al., On the stability in phase-lag heat conduction with two temperatures, J. Evol. Eq., 18 (2018), 1697-1712.10.1007/s00028-018-0457-z
  12. [12] Marin, M. et al. On the decay of exponential type for the solutions in a dipolar elastic body, J. Taibah Univ. Sci. 14 (1) (2020), 534-54010.1080/16583655.2020.1751963
  13. [13] Zhang, L. et al., Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles, Entropy, 22(10), Art. No.1070, 202010.3390/e22101070759714533286839
  14. [14] Marin, M. et al., C Carstea, A domain of influence in the MooreGibson-Thompson theory of dipolar bodies, J. Taibah Univ. Sci., 14(1), 653-660, 2020.10.1080/16583655.2020.1763664
  15. [15] Mindlin, R.D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16 (1964), 51-78.10.1007/BF00248490
  16. [16] Green, A.E., Rivlin, R.S., Multipolar continuum mechanics, Arch. Ration. Mech. Anal., 17 (1964), 113-147.10.1007/BF00253051
  17. [17] Gurtin, M.E., The dynamics of solid-solid phase transitions, Arch. Rat. Mech. Anal., 4 (1994), 305-335.
  18. [18] Fried, E., Gurtin, M.E., Thermomechanics of the interface between a body and its environment, Continuum Mech. Therm., 19(5) (2007), 253-271.10.1007/s00161-007-0053-x
  19. [19] Stanciu, M. et al., Vibration Analysis of a Guitar considered as a Symmetrical Mechanical System, Symmetry, Basel, 11(6)(2019), Art. No. 727.
  20. [20] Marin, M., An evolutionary equation in thermoelasticity of dipolar bodies, J. Math. Phys., 40 (1999), No. 3, 1391-1399.
  21. [21] Marin, M., A domain of influence theorem for microstretch elastic materials, Nonlinear Anal. Real World Appl., 11(5)(2010), 3446-3452.10.1016/j.nonrwa.2009.12.005
  22. [22] Marin, M. et al., Modeling a microstretch thermo-elastic body with two temperatures, Abstract and Applied Analysis, 2013, Art. No. 583464, 1-7, 201310.1155/2013/583464
  23. [23] Othman, M.I.A., et al., A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model, Int J Numer Method H, 29(12), 4788-4806, 201910.1108/HFF-04-2019-0359
  24. [24] Chirila A, et al., On adaptive thermo-electro-elasticity within a Green-Naghdi type II or III theory. Contin. Mech. Thermodyn., 31(5) (2019), 1453-1475.10.1007/s00161-019-00766-2
  25. [25] Marin, M., A temporally evolutionary equation in elasticity of micropolar bodies with voids, U.P.B. Sci. Bull., Series A-Applied Mathematics Physics, 60(3-4)(1998), 3-12.
  26. [26] Knops, R.J., Wilkes, E.W., Theory of elastic stability, Flugge handbuch der Physik (ed. C. Truesdell), vol. VI a/3, Springer-Verlag, (1973), 125-302.10.1007/978-3-642-69569-8_2
  27. [27] Knops, R.J., Payne, L.E., Growth estimates for solutions of evolutionary equations in Hilbert space with applications in elastodynamics, Arch. Ration. Mech. Anal., 41 (1971), 363-398.10.1007/BF00281873
DOI: https://doi.org/10.2478/auom-2022-0025 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 179 - 192
Submitted on: Sep 24, 2021
|
Accepted on: Nov 30, 2021
|
Published on: Jun 2, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 M. Marin, S. Vlase, I.M. Fudulu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.