Have a personal or library account? Click to login
Motion of Inextensible Quaternionic Curves and Modified Korteweg-de Vries Equation Cover

Motion of Inextensible Quaternionic Curves and Modified Korteweg-de Vries Equation

By: Kemal Eren  
Open Access
|Jun 2022

References

  1. [1] D. J. Korteweg, G. De Vries, On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. Philos. Magazine 39 (1895), 422–443.
  2. [2] T. Geyikli, Finite Element Studies of the mKdV Equation[Dissertation]. UK, Bangor, University College of North Wales, 1994.
  3. [3] M. Dehghan, A. Shokri, A Numerical Method for KdV Equation Using Collocation. Nonlinear Dynamics 50 (2007), 111–120.
  4. [4] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijing and Springer-Verlag, Berlin Heidelberg, 2009.10.1007/978-3-642-00251-9
  5. [5] S. Islam, K. Khan, M. A. Akbar, An Analytical Method for Finding Exact Solutions of Modified Kortewegde Vries Equation. Results in Physics 5 (2015), 131–135.
  6. [6] E. Previato, Geometry of the Modified KdV Equation. Lecture Notes in Physics 424 (1993), 43–65.10.1007/BFb0021441
  7. [7] M. Wadati, The Modified Korteweg-de Vries Equation. J. Phys. Soc. Japan 34(5) (1973), 1289–1296.10.1143/JPSJ.34.1289
  8. [8] S. Tek, Modified Korteweg-de Vries Surfaces. J. Math. Physics 48 (2007), 013505.10.1063/1.2409523
  9. [9] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge University Press, 2002.10.1017/CBO9780511606359
  10. [10] N. Hayashi, P. Naumkin, On the Modified KortewegDe Vries Equation. Math. Phys. Anal. Geom. 4(3) (2001), 197–227.10.1023/A:1012953917956
  11. [11] W. R. Hamilton, Elements of Quaternions. Chelsea, New York, 1899.
  12. [12] M. Akyiğit, H. H. Kösal, M. Tosun, Split Fibonacci Quaternions. Adv. Appl. Clifford Algebras 23 (2013), 535545.10.1007/s00006-013-0401-9
  13. [13] K. E. Özen, M. Tosun, Fibonacci Elliptic Biquaternions. Fundam. J. Math. Applications 4(1) (2021), 1016.10.33401/fujma.811058
  14. [14] K. Bharathi, M. Nagaraj, Quaternion Valued Function of a Real Serret-Frenet Formulae. Indian J. Pure Appl. Mathematics 16 (1985), 741756.
  15. [15] S. Demir, Physical Applications of Complex and Dual Quaternions [Dissertation]. Turkey: Anadolu University, 2003.
  16. [16] Ö. G. Yıldız, Ö. Içer, A Note on Evolution of Quaternionic Curves in the Euclidean Space. Konuralp J. Mathematics 7(2) (2019), 462469.
  17. [17] T. Soyfidan, H. Parlatici, M. A. Güngör, On the Quaternionic Curves According to Parallel Transport Frame. TWMS J. Pure Appl. Mathematics 4(2) (2013), 194203.
DOI: https://doi.org/10.2478/auom-2022-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 91 - 101
Submitted on: Aug 10, 2021
Accepted on: Nov 10, 2021
Published on: Jun 2, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Kemal Eren, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.