Have a personal or library account? Click to login
Nearest neighbor estimates of Kaniadakis entropy Cover

References

  1. [1] Bancescu, I. (2018). Some classes of statistical distribution. Properties and applications. Analele Stiintifice ale Universitatii Ovidius Constanta, 26 (1), 43-68.10.2478/auom-2018-0002
  2. [2] Barbu, V. (2006). Discrete-Time Semi-Markov Model for Reliability and Survival Analysis. Communications in Statistics Theory and Methods. Vol. 33, 2833-2868, https://doi.org/10.1081/STA-20003792310.1081/STA-200037923
  3. [3] Barbu, V.S., Karagrigoriu, A., Makrides, A. (2020). Statistical inference for a general class of distributions with time-varying parameters. Journal of Applied Statistics. Vol. 47, 2354-2373, https://doi.org/10.1080/02664763.2020.176327110.1080/02664763.2020.1763271
  4. [4] Beirlant, J., Dudewicz, E. J., Gyrfi, L., Van der Meulen, E. C. (2001) Nonpara-metric entropy estimation: an overview. Scientific Exchange Program between the Belgian Academy of Sciences and the Hungarian Academy of Sciences in the field of Mathematical Information Theory, and NATO Research Grant. Research Grant No. CRG 931030.
  5. [5] Botha, T., Ferreira, J., Bekker, A. (2021). Alternative Dirichlet Priors for Estimating Entropy via a Power Sum Functional. Mathematics, 9(13), 149310.3390/math9131493
  6. [6] Bulinski, A., Dimitrov, D. (2021). Statistical Estimation of the Kullback-Leibler Divergence. Mathematics, 9(5), 54410.3390/math9050544
  7. [7] Debreuve, E. (2009). Statistical similarity measures and k nearest neighbor estimators teamed up to handle high-dimensional descriptors in image and video processing. University of Nice-Sophia Antipolis, France.
  8. [8] Jiao, J., Gao, W., Han, Y. (2018). The nearest neighbor information estimator is adaptively near minimax rate optimal. 32nd Conference on Neural Information Processing Systems, Montreal, Canada.
  9. [9] Keller, F., Muller, E., Bohm, K. Estimating mutual information on data streams. Karlsruhe Institute of Technology, Germany and University of Antwerp, Belgium.
  10. [10] Kozachenko, L. F. and Leonenko, N. N. (1987). Sample estimates of entropy of a random vector. Problems of Information Transmission, 23, 95-101.
  11. [11] Lefvre, F., Gaic, M., Jurek, F., Keizer, S., Mairesse, F., Thompson, B., Yu, K., Young, S. (2009). k-Nearest Neighbor Monte-Carlo Control Algorithm for POMDP-based Dialogue Systems. Proceedings of the SIGDIAL 2009 Conference, The 10th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 11-12 September 2009, London, UK10.3115/1708376.1708414
  12. [12] Li, S., Mnatsakanov, R.M., Andrew, M.E. (2011). k-nearest neighbor based consistent entropy estimation for hypersherical distributions. Entropy, 13.10.3390/e13030650
  13. [13] Panait, I. (2018). A Weighted Entropic Copula from Preliminary Knowledge of Dependence. Analele Stiintifice ale Universitatii Ovidius Constanta Seria Matematica, 26(1), 223-24010.2478/auom-2018-0014
  14. [14] Popescu, P.G., Preda, V., Slusanschi, E.I. (2014). Bounds for Je reysTsallis and JensenShannonTsallis divergences. Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 280-283.10.1016/j.physa.2014.06.073
  15. [15] Popkov, Y.S. (2021). Qualitative Properties of Randomized Maximum Entropy Estimates of Probability Density Functions. Mathematics, 9(5), 548.10.3390/math9050548
  16. [16] Preda, V., Bancescu, I. (2020). Dynamics of the Group Entropy Maximization Processes and of the Relative Entropy Group Minimization Processes Based on the Speed-gradient Principle. Statistical Topics and Stochastic Models of Dependent Data with Applications, Chapter 9.10.1002/9781119779421.ch9
  17. [17] Preda, V., Dedu, S., Gheorghe, C. (2015). New classes of Lorenz curves by maximizing Tsallis entropy under mean and Gini equality and inequality constraints. Physica A, Vol. 436, 925-93210.1016/j.physa.2015.05.092
  18. [18] Preda, V., Dedu, S., Sheraz, M. (2014). New measure selection for Hunt-Devolder semi-Markov regime switching interest rate models. Physica A, Vol. 407, 350-35910.1016/j.physa.2014.04.011
  19. [19] Sfetcu, R.-C. (2016). Tsallis and Renyi divergences of generalized Jacobi polynomials. Physica A, Vol. 460, 131-13810.1016/j.physa.2016.04.017
  20. [20] Sfetcu, R.-C., Sfetcu S.-C., Preda, V. (2021). Ordering Awad-Varma Entropy and Applications to Some Stochastic Models. Mathematics, 9(3), 280, https://doi.org/10.3390/math903028010.3390/math9030280
  21. [21] Sfetcu, S.C. (2021). Varma Quantile Entropy Order. Analele Stiintifice ale Universitatii Ovidius Constanta Seria Matematica, 29 (2), 249-26410.2478/auom-2021-0029
  22. [22] Sheraz, M., Dedu, S., Preda, V. (2015). Entropy Measures for Assessing Volatile Markets. Elsevier, Procedia Economics and Finance, Vol. 22, 655-66210.1016/S2212-5671(15)00279-8
  23. [23] Singh, H., Misra, N., Nizdo, V., Fedorowicz, A, Demchuk, E. (2003). Nearest neighbor estimates of entropy. American Journal of Mathematical and Management Sciences, Vol. 2310.1080/01966324.2003.10737616
  24. [24] Singh, S., Poczos, B. (2016). Analysis of k-nearest neighbor distances with applications to entropy estimation. Carnegie Mellon University.
  25. [25] Sorjamaa, A., Hao, J., Lendasse, A. (2005). Mutual information and k-nearest neighbor approximator for time series prediction. Neural Network Research Centre, Helsinki University of Technology.10.1007/11550907_87
  26. [26] Sricharan, K., Raich, R., Hero. A.O. k-nearest neighbor estimation of entropies with confidence. Department of EECS, Oregon State University of Michigan, Ann Arbor.
  27. [27] Tsybakov, A.B., van der Meulen, E.C. (1996). Root-n consistent estimators of entropy for densities with unbounded support. Scandinavian Journal of Royal Statistical Society, Series B, 38, 54-59.
  28. [28] Wang, X., Gui, W. (2021). Bayesian Estimation for Burr Type II Distribution under Progressive Type II Censored Data. Mathematics, 9(4), 31310.3390/math9040313
  29. [29] Zamanzade, E., Arghami, N. R. (2011). Testing normality based on new entropy estimators. Journal of Statistical Computation and Simulation.10.1080/00949655.2011.592984
  30. [30] Zhao, P., Lai, L. (2018). Analysis of kNN information estimators for smooth distributions. 56th Annual Conference on Communication, Control and Computing, Monticello, USA.10.1109/ALLERTON.2018.8635874
DOI: https://doi.org/10.2478/auom-2022-0010 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 171 - 189
Submitted on: Jul 14, 2021
Accepted on: Sep 13, 2021
Published on: Mar 12, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Ioana Dănilă-Cernat, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.