Have a personal or library account? Click to login
On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function Cover

On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function

Open Access
|Mar 2022

References

  1. [1] Bieberbach, L.:Über die Koeffizienten derjenigen Potenzreihein welche eine schlichte Abbildung des Einheitskreises veritteln, Reimer in Komm: Berlin, Germany, (1916).
  2. [2] De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154 (1), 137–152 (1985).10.1007/BF02392821
  3. [3] Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V.: Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 45, 213–232 (2019).10.1007/s41980-018-0127-5
  4. [4] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable. NewYork-Dover: Mineola, NY, USA, (1957).
  5. [5] Duren, P. L.: Univalent Functions. vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, (1983).
  6. [6] Ehrenborg, R.: The Hankel determinant of exponential polynomials. Amer. Math. Monthly, 107, 557–560 (2000).10.1080/00029890.2000.12005236
  7. [7] Fekete, M., Szegö, G.: Eine Benberkung uber ungerada Schlichte funktionen. J. London Math. Soc. 8, 85–89 (1933).10.1112/jlms/s1-8.2.85
  8. [8] Janowski, W.: Extremal problems for a family of functions with positive real part and for some related families. Annales Polonici Mathematici. 23, 159-177 (1970).10.4064/ap-23-2-159-177
  9. [9] Keogh, F.R., Merkes, E.P.: A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 20, 8-12 (1969).10.1090/S0002-9939-1969-0232926-9
  10. [10] Libera R. J., Złotkiewicz E. J.: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 85(2), 225-230 (1982).10.1090/S0002-9939-1982-0652447-5
  11. [11] Libera R. J., Złotkiewicz E. J.: Coefficient bounds for the inverse of a function with derivative in 𝒫. Proc. Amer. Math. Soc. 87(2), 251-257 (1983).10.1090/S0002-9939-1983-0681830-8
  12. [12] Ma, W., Minda. D.: A unified treatment of some special classes of univalent functions. Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, Tianjin, pp. 157-169 (1992).
  13. [13] Mendiratta, R., Nagpal, S., Ravichandran, V.: On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 38, 365–386 (2015).10.1007/s40840-014-0026-8
  14. [14] Miller, S.S., Mocanu, P.T.: Differential Subordination. Theory and Applications. Pure and Applied Mathematics, Marcel Dekker Inc., p. 225 (2000).10.1201/9781482289817
  15. [15] Noonan, J. W., Thomas, D. K.: On the second Hankel determinant of areally mean p-valent functions. Trans. Amer. Math. Soc. 223(2), 337–346 (1976).10.1090/S0002-9947-1976-0422607-9
  16. [16] Noor, K. I.: On analytic functions related with function of bounded boundary rotation. Comment. Math. Univ. St. Pauli. 30(2), 113–118 (1981).
  17. [17] Noor, K. I.: Hankel determinant problem for the class of function with bounded boundary rotation. Rev. Roum. Math. Pures Et Appl. 28, 731–739 (1983).
  18. [18] Noor, K. I., Al-Bany, S. A.: On Bazilevic functions. Int. J. Math. Math. Sci. 10(1), 79–88 (1987).10.1155/S0161171287000103
  19. [19] Noor, K. I.: Higer order close-to-convex functions. Math. Japon. 37(1), 1–8 (1992).
  20. [20] Padmanabhan, K.S., Parvatham, R.: Some applications of differential subordination. Bull. Aust. Math. Soc. 32, 321-330 (1985).10.1017/S0004972700002410
  21. [21] Pommerenke, C., Jensen, G.: Univalent Functions. Vandenhoeck and Ruprecht: Gottingen, Germany, (1975).
  22. [22] Pommerenke, C.: On the coefficients and Hankel determinant of univalent functions. J. Lond. Math. Soc. 41, 111-112 (1966).10.1112/jlms/s1-41.1.111
  23. [23] Shanmugam, T.N.: Convolution and differential subordination. Int. J. Math. Math. Sci. 12, 333-340 (1989).10.1155/S0161171289000384
  24. [24] Sókol, J., Stankiewicz, J.: Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Naukowe/Oficyna Wydawnicza al. Powstanców Warszawy. 19, 101–105 (1996).
  25. [25] Srivastava, H.M., Owa, S. (Eds.): Current Topics in Analytic Function Theory, World Scientific Publishing Company, London, UK. (1992).10.1142/1628
DOI: https://doi.org/10.2478/auom-2022-0005 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 75 - 89
Submitted on: Dec 30, 2020
Accepted on: May 28, 2021
Published on: Mar 12, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Daniel Breaz, Adriana Cătaş, Luminiţa-Ioana Cotîrlă, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.