Have a personal or library account? Click to login
On the Complex and Chaotic Dynamics of Standard Logistic Sine Square Map Cover
Open Access
|Nov 2021

References

  1. [1] A. Hastings, C.L. Hom, S. Ellner, P. Turchin, H.C.J. Godfray, Chaos in Ecology: Is Mother Nature a Strange Attractor?, Annu. Rev. Ecol. Syst. 24 (1993), 1–33.10.1146/annurev.es.24.110193.000245
  2. [2] D. Rickles, P. Hawe, A. Shiell, A Simple Guide to Chaos and Complexity, J. Epidemiol. Commun. Health. 61 (2007), 933–937.10.1136/jech.2006.054254246560217933949
  3. [3] M. Berezowski, M. Lawnik, Identification of fast-changing signals by means of adaptive chaotic transformations, Nonlinear Anal. Model. Control, 19 (2014), 172–177.10.15388/NA.2014.2.2
  4. [4] M. Lawnik, M. Berezowski, Identification of the oscillation period of chemical reactors by chaotic sampling of the conversion degree, Chem. Process Eng. 35 (2014), 387–393.10.2478/cpe-2014-0029
  5. [5] M. Lawnik, Generation of numbers with the distribution close to uniform with the use of chaotic maps, Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, (2014), 451–455.10.5220/0005090304510455
  6. [6] S. Kumari, R. Chugh, J. Cao, C. Huang, On the construction, properties and Hausdorff dimension of random Cantor one pth set, AIMS Mathematics, 5 (2020), 3138–3155.10.3934/math.2020202
  7. [7] S. Kumari, R. Chugh, J. Cao, C. Huang, Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications, Mathematics 7 (2019), 967.10.3390/math7100967
  8. [8] S. Kumari, R. Chugh, Novel fractals of Hutchinson Barnsley operator in Hausdorff g-metric spaces, Poincare Journal of Analysis & Applications, 7 (2020), 99–117.10.46753/pjaa.2020.v07i01.010
  9. [9] S. Kumari, M. Kumari, R. Chugh, Dynamics of superior fractals via Jungck SP orbit with s-convexity, Annals of the University of Craiova-Mathematics and Computer Science Series, 46(2), 2019, 344–365.
  10. [10] S. Kumari, M. Kumari, R. Chugh, Graphics for complex polynomials in Jungck-SP orbit, IAENG International Journal of Applied Mathematics, 49 (2019), 568–576.
  11. [11] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Westview Press, USA 2003.
  12. [12] K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos : An Introduction to Dynamical Systems, Springer, New York 1996.10.1007/b97589
  13. [13] R.A. Holmgren, A first course in discrete dynamical systems, Springer-Verlag; 1994.10.1007/978-1-4684-0222-3
  14. [14] R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–475.10.1038/261459a0934280
  15. [15] S. Kumar, M. Kumar, R. Budhiraja, M.K. Das, S. Singh, A secured cryptographic model using intertwining logistic map, Procedia Computer Science, 143 (2018), 804–811.10.1016/j.procs.2018.10.386
  16. [16] C. Han, An image encryption algorithm based on modified logistic chaotic map, Optik, 181 (2019), 779-785.10.1016/j.ijleo.2018.12.178
  17. [17] Z. Hua, Y. Zhou, Image encryption using 2D Logistic-adjusted-Sine map, Inf. Sci. 339 (2016), 237–253.10.1016/j.ins.2016.01.017
  18. [18] L.P.L. de Oliveira, M. Sobottka, Cryptography with chaotic mixing, Chaos, Solitons & Fractals, 3 (2008), 466–471.10.1016/j.chaos.2006.05.049
  19. [19] P. Shang, X. Li, S. Kame, Chaotic analysis of traffic time series, Chaos, Solitons & Fractals, 25 (2005), 121–128.10.1016/j.chaos.2004.09.104
  20. [20] S.C. Lo, H.J. Cho, Chaos and control of discrete dynamic traffic model, J. Franklin Inst. 342 (2005), 839–851.10.1016/j.jfranklin.2005.06.002
  21. [21] M. McCartney, A discrete time car following model and the bi-parameter logistic map, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 233–243.10.1016/j.cnsns.2007.06.012
  22. [22] Ashish, J. Cao, R. Chugh, Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model, Nonlinear Dynamics, 2018, 1–17. https://doi.org/10.1007/s11071-018-4403-y.10.1007/s11071-018-4403-y
  23. [23] T. Nagatani, Vehicular motion through a sequence of traffic lights controlled by logistic map, Physics Letters A, 372 (2008), 5887–5890.10.1016/j.physleta.2008.07.063
  24. [24] T. Nagatani, N. Sugiyama, Vehicular traffic flow through a series of signals with cycle time generated by a logistic map, Physica A, 392 (2013), 851–856.10.1016/j.physa.2012.10.015
  25. [25] S. Kumari, R. Chugh, A novel four-step feedback procedure for rapid control of chaotic behavior of the logistic map and unstable traffic on the road, Chaos, 30 (2020), 123115.10.1063/5.0022212
  26. [26] N. Singh, A. Sinha, Chaos-based secure communication system using logistic map, Opt. Lasers Eng. 48 (2010), 398–404.10.1016/j.optlaseng.2009.10.001
  27. [27] J.S. Martin, M.A. Porter, Convergence time towards periodic orbits in discrete dynamical systems, PLOS One, 9 (2014), 1–9.
  28. [28] R.V. Medina, A.D. Mendez, J.L. Rio-Correa, J.L. Hernandez, Design of chaotic analog noise generators with logistic map and MOS QT circuits, Chaos, Solitons & Fractals, 40 (2009), 1779–1793.10.1016/j.chaos.2007.09.088
  29. [29] R. Chugh, A. Kumar, S. Kumari, A novel epidemic model to analyze and control the chaotic behavior of covid-19 outbreak, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 13(2020), 479-508.
  30. [30] F.G. Xie, B.L. Hao, ymbolic Dynamics of the Sine-square Map, Chaos, Solitons & Fractals, 3 (1993), 47-60.10.1016/0960-0779(93)90039-4
  31. [31] P. Philominathan, P. Neelamegam, S. Rajasekar, Statistical dynamics of sine-square map, Physica A, 242 (1997), 391–408.10.1016/S0378-4371(97)00259-8
  32. [32] B. Saha, S.T. Malasani, J.B. Seventline, Application of Modified Chaotic Sine Map in Secure Communication, Int. J. Comput. Appl. 113 (2015), 9–14.
  33. [33] H. Ogras, M. Turk, A Secure Chaos-based Image Cryptosystem with an Improved Sine Key Generator, American Journal of Signal Processing, 6 (2016), 67–76.
  34. [34] X. Jie1, C. Pascal, F.P. Daniele, T.A. Kaddous, L. KePing, Chaos generator for secure transmission using a sine map and an RLC series circuit, Science in China Series F: Information Sciences, 53 (2010), 129–136.10.1007/s11431-010-0024-5
  35. [35] G.C. Wu, D. Baleanu, S.D. Zeng, Discrete chaos in fractional sine and standard maps, Physics Letters A, 378 (2014), 484–487.10.1016/j.physleta.2013.12.010
  36. [36] Egydio de Carvalho R., Edson D. Leonel: Squared sine logistic map, Physica A, 463 (2016), 37–44.10.1016/j.physa.2016.07.008
  37. [37] J. Wu, X. Liao, B. Yang, Image Encryption Using 2D Henon-Sine Map and DNA Approach, Signal Process. 153 (2018), 11–23, doi: 10.1016/j.sigpro.2018.06.008.10.1016/j.sigpro.2018.06.008
  38. [38] Z. Hua, F. Jin, B. Xu, H. Huang, 2D Logistic-Sine-Coupling Map for Image Encryption, Signal Process. 149 (2018), 148–161, doi: 10.1016/j.sigpro.2018.03.010.10.1016/j.sigpro.2018.03.010
  39. [39] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506–510.10.1090/S0002-9939-1953-0054846-3
  40. [40] M. Rani, R. Agarwal, A new experimental approach to study the stability of logistic map, Chaos, Solitons & Fractals, 41 (2009), 2062–2066.10.1016/j.chaos.2008.08.022
  41. [41] Ashish, J. Cao, A Novel Fixed Point Feedback Approach Studying the Dynamical Behaviors of Standard Logistic Map, Internat. J. Bifur. Chaos 29(2019), 1950010 (16 pages).10.1142/S021812741950010X
  42. [42] J. Fridrich, Image encryption based on chaotic maps, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics(ICSMC‘97), 2(1997), 1105–1110.
DOI: https://doi.org/10.2478/auom-2021-0041 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 201 - 227
Submitted on: Jan 8, 2021
|
Accepted on: Feb 19, 2021
|
Published on: Nov 23, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Sudesh Kumari, Renu Chugh, Radu Miculescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.