Have a personal or library account? Click to login
On numerical solution of nonlinear parabolic multicomponent diffusion-reaction problems Cover

On numerical solution of nonlinear parabolic multicomponent diffusion-reaction problems

By: Gh. Juncu,  C. Popa and  Gh. Sarbu  
Open Access
|Nov 2021

References

  1. [1] J. Bandrowski and A. Kubaczka, On the Prediction of Diffusivities in Multicomponent Liquid Systems, Chem. Eng. Sci., 37, (1982), 13091313.10.1016/0009-2509(82)85003-3
  2. [2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, (1994).
  3. [3] Gh. Juncu, A. Nicola, C. Popa, and E. Stroila, Preconditioned Conjugate Gradient and Multi-Grid Methods for Numerical Solution of Multi-Component Mass Transfer Equations. II. Convection - Diffusion Reaction Equations, Numer.Heat Transfer A, 66, (2014), 12971319.10.1080/10407782.2014.915669
  4. [4] Gh. Juncu, A. Nicola, C. Popa, and E. Stroila, Preconditioned Conjugate Gradient and Multi-Grid Methods for Numerical Solution of Multi-Component Mass Transfer Equations. I. Diffusion Reaction Equations, Numer.Heat Transfer A, 66, (2014), 12681296.10.1080/10407782.2014.915669
  5. [5] Gh. Juncu, Unsteady Ternary Mass Transfer from a Sphere in Creeping Flow Int. J. Therm. Sci., 44, (2005), 255266.10.1016/j.ijthermalsci.2004.08.003
  6. [6] Gh. Juncu, A. Nicola, C. Popa, and E. Stroila, Numerical solution of the parabolic multicomponent convection diffusion mass transfer equations by a splitting method, Numer.Heat Transfer A, 71, (2017), 72-90.10.1080/10407782.2016.1257287
  7. [7] Gh. Juncu, A. Nicola, C. Popa, Splitting methods for the numerical solution of multi-component mass transfer problems Mathematics and Computers in Simulation, 152, (2018), 1-14.10.1016/j.matcom.2018.05.001
  8. [8] A. Kumar and S. Mazumder, Coupled Solution of the Species Conservation Equations using Unstructured Finite-Volume Method, Int. J. Numer. Methods Fluids, 64, (2010),409442.10.1002/fld.2162
  9. [9] E. Kozeschnik, Multicomponent Diffusion Simulation Based on Finite Elements, Metall.Mater. Trans. A, 30A, (1999), 25752582.10.1007/s11661-999-0296-1
  10. [10] A. Leahy-Dios and A. Firoozabadi, Unified Model for Nonideal Multicomponent Molecular Diffusion Coefficients, AIChE J., 53, (2007), 29322939.10.1002/aic.11279
  11. [11] F. Lehmann and Ph. Ackerer, Comparison of Iterative Methods for Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media, Transp. Porous Media, 31, (1998), 275292.10.1023/A:1006555107450
  12. [12] E. Leonardi and C. Angeli, Transient Diffusion within Spherical Particles: Numerical Resolution of the MaxwellStefan Formulation, Ind. Eng. Chem. Res., 49, (2010), 56545660.
  13. [13] J. C. Maxwell, On the Dynamic Theory of Gases, Philos. Trans. R Soc., 157, (1867), 4988.10.1098/rstl.1867.0004
  14. [14] S. Mazumder, Critical Assessment of the Stability and Convergence of the Equations of Multi-Component Diffusion, J. Comput. Phys., 212, (2006), 383392.10.1016/j.jcp.2005.07.018
  15. [15] R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, Wiley, New York, (1967).
  16. [16] J. Stefan, Uber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen, Akad. Wiss. Wien, 63, (1871), 63124.
  17. [17] A. Spille-Kohoff, E. Preuss, and K. Bttcher, Numerical Simulation of Multi-Component Species Transport in Gases at Any Total Number of Components, Int. J. Heat Mass Transfer, 55, (2012), 53735377.10.1016/j.ijheatmasstransfer.2012.05.040
  18. [18] J. M. Stockie, K. Promislow, and B. R. Wetton, A Finite Volume Method for Multicomponent Gas Transport in a Porous Fuel Cell Electrode, Int. J. Numer. Methods Fluids, 41, (2003), 577599.10.1002/fld.453
  19. [19] R. Taylor and R. Krishna, Multicomponent Mass Transfer, Wiley, New York, (1993).
  20. [20] W. III. Wangard, D. S. Dandy, and B. J. Miller, A Numerically Stable Method for Integration of the Multicomponent Species Diffusion Equations, J. Comput. Phys., 174, (2001), 460472.10.1006/jcph.2001.6930
  21. [21] R. Weiss, Parameter-Free Iterative Linear Solvers, Akademie, Berlin, (1996).
DOI: https://doi.org/10.2478/auom-2021-0040 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 183 - 200
Submitted on: Dec 21, 2020
|
Accepted on: Apr 12, 2021
|
Published on: Nov 23, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Gh. Juncu, C. Popa, Gh. Sarbu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.