Have a personal or library account? Click to login
On 1-absorbing δ-primary ideals Cover

References

  1. [1] Anderson, D. D. and Winders, M., Idealization of a module. J. Comm. Alg., 1(1) (2009), 3-56.10.1216/JCA-2009-1-1-3
  2. [2] Badawi, A., On 2-absorbing ideals of commutative rings. Bulletin of the Australian Mathematical Society, 75(3) (2007), 417-429.10.1017/S0004972700039344
  3. [3] Badawi, A. and Fahid, B., On weakly 2-absorbin δ-primary ideals of commutative ring. Georgian. Math. J., 27(4) (2017), 503-516.10.1515/gmj-2018-0070
  4. [4] Badawi, A. and Celikel, E. Y., On 1-absorbing primary ideals of a commutative rings. J. Algebra Appl., (2020), 2050111.10.1142/S021949882050111X
  5. [5] Badawi, A., Sonmez, D., Yesilot, G., On weakly δ-semiprimary ideals of commutative rings. Algebra Colloq., 25 (2018), 387-398.
  6. [6] Dobbs, D. E., Elkhalfi, A., Mahdou, N., Trivial extensions satisfying certain valuation-like properties, Comm. Algebra, 47(5) (2019), 2060-2077.10.1080/00927872.2018.1527926
  7. [7] Dumitrescu, T., Mahdou, N., Zahir, Y., Radical factorization for trivial extensions and amalgamated duplication rings. Journal of Algebra and Its Applications, 20(02) (2021), 2150025.10.1142/S0219498821500250
  8. [8] Fahid, B. and Dongsheng, Z., 2-absorbing δ-primary ideals in commutative rings. Kyungpook Mathematical Journal, 57 (2) (2017), 193-198.
  9. [9] Glaz, S., Commutative Coherent Rings. Lecture Notes in Math. 1371, Springer-Verlag, Berlin, 1989.
  10. [10] Huckaba, J. A., Commutative Rings with Zero Divisors. Dekker, New York, 1988.
  11. [11] Kabbaj, S. and Mahdou, N., Trivial extensions defined by coherent-like conditions. Comm. Algebra, 32 (10) (2004), 3937-3953.10.1081/AGB-200027791
  12. [12] Kaplansky, I., Commutative Rings. rev. ed., Univ. Chicago Press, Chicago, 1974.10.1007/BFb0068926
  13. [13] Ulucak, G., Tekir, Ü., Koc, S., On n-absorbing δ-primary ideals. Turkish Journal of Mathematics, 42 (4) (2018), 1833-1844.10.3906/mat-1710-3
  14. [14] Yassine, A., Nikmehr, M. J., Nikandish, R., On 1-absorbing prime ideals of commutative rings. J. Algebra Appl., (2020), 2150175.10.1142/S0219498821501759
  15. [15] Zhao, D., δ-primary ideals of commutative rings. Kyungpook Math. J., 41 (1) (2001), 17-22
DOI: https://doi.org/10.2478/auom-2021-0038 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 135 - 150
Submitted on: Mar 9, 2021
Accepted on: Apr 30, 2021
Published on: Nov 23, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Abdelhaq El Khalfi, Najib Mahdou, Ünsal Tekir, Suat Koç, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.