Have a personal or library account? Click to login
Two Points Taylor’s Type Representations for Analytic Complex Functions with Integral Remainders Cover

Two Points Taylor’s Type Representations for Analytic Complex Functions with Integral Remainders

Open Access
|Jul 2021

References

  1. [1] M. Akkouchi, Improvements of some integral inequalities of H. Gauchman involving Taylor’s remainder. Divulg. Mat. 11 (2003), no. 2, 115–120.
  2. [2] G. A. Anastassiou, Taylor-Widder representation formulae and Ostrowski, Grüss, integral means and Csiszar type inequalities. Comput. Math. Appl. 54 (2007), no. 1, 9–23.
  3. [3] G. A. Anastassiou, Ostrowski type inequalities over balls and shells via a Taylor-Widder formula. J. Inequal. Pure Appl. Math. 8 (2007), no. 4, Article 106, 13 pp.
  4. [4] S. S. Dragomir, New estimation of the remainder in Taylor’s formula using Grüss’ type inequalities and applications. Math. Inequal. Appl. 2 (1999), no. 2, 183–193.
  5. [5] S. S. Dragomir and H. B. Thompson, A two points Taylor’s formula for the generalised Riemann integral. Demonstratio Math. 43 (2010), no. 4, 827–840.
  6. [6] H. Gauchman, Some integral inequalities involving Taylor’s remainder. I. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 26, 9 pp. (electronic).
  7. [7] H. Gauchman, Some integral inequalities involving Taylor’s remainder. II. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 1, 5 pp. (electronic).
  8. [8] D.-Y. Hwang, Improvements of some integral inequalities involving Taylor’s remainder. J. Appl. Math. Comput. 16 (2004), no. 1-2, 151–163.
  9. [9] A. I. Kechriniotis and N. D. Assimakis, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor’s formula. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic).
  10. [10] Z. Liu, Note on inequalities involving integral Taylor’s remainder. J. In-equal. Pure Appl. Math. 6 (2005), no. 3, Article 72, 6 pp. (electronic).
  11. [11] W. Liu and Q. Zhang, Some new error inequalities for a Taylor-like formula. J. Comput. Anal. Appl. 15 (2013), no. 6, 1158–1164.
  12. [12] N. Ujević, Error inequalities for a Taylor-like formula. Cubo 10 (2008), no. 1, 11–18.
  13. [13] Z. X. Wang and D. R. Guo, Special Functions, World Scientific Publ. Co., Teaneck, NJ (1989).
DOI: https://doi.org/10.2478/auom-2021-0022 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 131 - 154
Submitted on: Sep 5, 2020
Accepted on: Oct 15, 2020
Published on: Jul 8, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Silvestru Sever Dragomir, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.