Have a personal or library account? Click to login
A note on the ternary Diophantine equation x2 − y2m = zn Cover

References

  1. [1] M.A. Bennett, I. Chen, S.R. Dahmen, S. Yazdani, Generalized Fermat equations: a miscellany, Int. J. Number Theory, 11 (2015), 1-28.10.1142/S179304211530001X
  2. [2] M.A. Bennett, P. Mihăilescu, S. Siksek, The generalized Fermat equation, Open Problems in Mathematics, (J. F. Nash, Jr. and M. Th. Rassias eds.), Springer, New York (2006), 173-205.10.1007/978-3-319-32162-2_3
  3. [3] M. A. Bennett and C. M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math., 15 (2004), 23-54.10.4153/CJM-2004-002-2
  4. [4] Y. Bugeaud, On the Diophantine equation x2 2m = yn, Proc. Amer. Math. Soc., 125 (1997), 3203-3208.10.1090/S0002-9939-97-04093-8
  5. [5] Y. Bugeaud, On the Diophantine equation x2 pm = yn, Acta Arith., 80 (1997), 213-223.10.4064/aa-80-3-213-223
  6. [6] J.H.E. Cohn, The Diophantine equation xn = Dy2 + 1, Acta Arith., 106 (2003), 73-83.10.4064/aa106-1-5
  7. [7] H. Darmon and L. Merel, Ternary Diophantine equations via Galois representations and modular forms, J. Reine Angew. Math., 490 (1997), 81-100.
  8. [8] W. Ivorra, Sur les e´quations xp + 2βyp = z2 et xp + 2βyp = 2z2, Acta Arith., 108 (2003), 327338.10.4064/aa108-4-3
  9. [9]C. Ko, On the Diophantine equation x2 = yn + 1, xy ≠ 0, Sci. Sinica 14 (1965), 457-460.
  10. [10] M.-H. Le, Some exponential Diophantine equations I: The equation D1x2 − D2y2 = λkz, J. Number Theory, 55 (1995), 209-221.10.1006/jnth.1995.1138
  11. [11] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math.., 572 (2004), 167-195.
  12. [12] L. J. Mordell, Diophantine equations, London, Academic Press, 1969.
  13. [13] A. Schinzel and R. Tijdeman, On the equation ym = P (x), Acta Arith., 31 (1976), 199-204.10.4064/aa-31-2-199-204
  14. [14] S. Siksek, On the Diophantine equation x2 = yp + 2kzp, Journal de Théorie des Nombres de Bordeaux, 15(2003), 839-846.10.5802/jtnb.429
  15. [15] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math., 141 (1995), 553-572.10.2307/2118560
  16. [16] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math., 141 (1995), 443-551.10.2307/2118559
  17. [17] H. Yang and R. Fu, An upper bound for least solution of the exponential Diophantine equation D1x2 D2y2 = λkz, Int. J. Numb. Theo., 11 (2015), 11071114.10.1142/S1793042115500608
DOI: https://doi.org/10.2478/auom-2021-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 93 - 105
Submitted on: Nov 20, 2020
Accepted on: Dec 30, 2020
Published on: Jul 8, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Attila Bérczes, Maohua Le, István Pink, Gökhan Soydan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.