Have a personal or library account? Click to login
Analysis of Control Interventions against Malaria in communities with Limited Resources Cover

Analysis of Control Interventions against Malaria in communities with Limited Resources

Open Access
|Jul 2021

References

  1. [1] R. Aguas, M. U. Ferreira, M. G. M. Gomes, Modeling the effects of relapse in the transmission dynamics of malaria parasites, Journal of Parasitology Research, 2012, Article ID 921715, 8 p., (2012), doi:10.1155/2012/921715.10.1155/2012/921715
  2. [2] F. B. Agusto, A. B. Gumel, Theoretical assessment of avian influenza vaccine, DCDS Series B. 13(1), 1–25, (2010).10.3934/dcdsb.2010.13.1
  3. [3] M. Alifrangis, et al., IgG reactivities against recombinant Rhoptry-Associated Protein-1 (rRAP-1) are associated with mixed Plasmodium infections and protection against disease in Tanzanian children, Parasitology 119, 337–342, (1999).10.1017/S0031182099004825
  4. [4] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, (1991).
  5. [5] A. P. Arez, J. Pinto, K. Palsson, G. Snounou, T. G. Jaenson, V. do Rosario, Transmission of mixed Plasmodium species and Plasmodium falciparum genotypes, Am. J. Trop. Med. Hyg. 68, 161–168, (2003).10.4269/ajtmh.2003.68.2.0680161
  6. [6] F. Ariey, V. Robert, The puzzling links between malaria transmission and drug resistance, Trends in Parasitology 19, 158–160, (2003).10.1016/S1471-4922(03)00054-0
  7. [7] E. A. Bakare, On the Qualitative behaviour of a human-mosquito model for Malaria with multiple vector control strategies. Int. J. Ecol. Econ. Stat. 36(2), 96–113, (2015).
  8. [8] E. A. Bakare, S. Hoskova-Mayerova, Numerical Treatment of Optimal Control Theory Applied to Malaria Transmission Dynamic Model, Quality and Quantity, 23 p., doi: 10.1007/s11135-020-01092-5, (2021).10.1007/s11135-020-01092-5
  9. [9] S. Bekesiene, S. Hoskova-Mayerova, P. Diliunas, Structural Equation Modeling Using the Amos and Regression of Effective Organizational Commitment Indicators in Lithuanian Military Forces. In Proceedings of the Aplimat–16th Conference on Applied Mathematics 2017, Proceedings, Bratislava, Slovakia, 91–102, (2017).
  10. [10] S. Bekesiene, S. Hoskova-Mayerova, Decision Tree-Based Classification Model for Identification of Effective Leadership Indicators. J. Math Fund. Sci. 50(2), 121–141, (2018). doi: 10.5614/J.MATH.FUND.SCI.2018.50.2.210.5614/j.math.fund.sci.2018.50.2.2
  11. [11] S. Bekesiene, I. Meidute-Kavaliauskiene, V. Vasiliauskiene, Accurate Prediction of Concentration Changes in Ozone as an Air Pollutant by Multiple Linear Regression and Artificial Neural Networks. Mathematics 2021, 9, 356, doi:10.3390/math9040356.10.3390/math9040356
  12. [12] J. T. Bousema, C. J. Drakeley, P. F. Mens, et al., Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae, Am. J. Trop. Med. Hyg. 78(3), 442–448, (2008).10.4269/ajtmh.2008.78.442
  13. [13] C. W. Brown, M. El. Kahoui, D. Novotni, A. Weber, Algorithmic methods for investigating equilibria in epidemic modeling, J. Symb. Comput. 41, 1157–1173, (2006).10.1016/j.jsc.2005.09.011
  14. [14] A. E. Bryson Jr. Optimal control 1950 to 1985. IEEE Control Systems Magazine, 26–33, (1996).10.1109/37.506395
  15. [15] C. Li-Ming, A. A. Lashari, I. H. Jung, K. O. Okosun, and Y. Il. Seo, Mathematical Analysis of a Malaria Model with Partial Immunity to Reinfection, Hindawi Publishing Corporation, Abstr Appl Ana., 2013, Article ID 405258, 17 p., http://dx.doi.org/10.1155/2013/405258 (2013).10.1155/2013/405258
  16. [16] C. Chiyaka, W. Garira, S. Dube, Effects of treatment and drug resistance on the transmission dynamics of malaria in endemic areas, Theor. Pop. Biol. 75, 14–29, (2009).10.1016/j.tpb.2008.10.00219013477
  17. [17] J. Ferguson, N. O’Leary, F. Maturo, S. Yusuf, M. O’Donnell, Graphical comparisons of relative disease burden across multiple risk factors, BMC Medical Research Methodology 19(1), Article Number: 186, doi: 10.1186/s12874-019-0827-4, (2019).10.1186/s12874-019-0827-4673760831506063
  18. [18] W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control. Springer Verlag, New York, (1975).10.1007/978-1-4612-6380-7
  19. [19] S. Florus, P. Otřísal. Vybrané metody studia chemické odolnosti izolačních ochranných fólií pro bojové chemické ltky. Chem. Listy 108(9), 838–842 (2014).
  20. [20] H. M. Yang, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector), Journal of Public Health 34, 223–231,(2000).10.1590/S0034-89102000000300003
  21. [21] R. M. Karrakchou, S. Gourari, Optimal control and infectiology: Application to an HIV/AIDS model. Appl Math Comput. 177, 807–818, (2006).10.1016/j.amc.2005.11.092
  22. [22] Y. H. Kang, S. Lenhart, V. Protopopescu, Optimal Control of Parameters and Input functions for Nonlinear Systems. Houston Journal of Mathematics, University of Houston, 33(4), 1231–1256, (2007).
  23. [23] R. Korsakiene, V. Kozak, S. Bekesiene, R. Smaliukiene, Modelling Internationalization of High Growth Firms: Micro Level Approach, E & M Ekonomie a Management, 22(1), 54–71, DOI: 10.15240/tul/001/2019-1-004, (2019).10.15240/tul/001/2019-1-004
  24. [24] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models. Chapman and Hall, (2007).10.1201/9781420011418
  25. [25] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, (2015). doi. 10.1007/978-1-4899-7612-310.1007/978-1-4899-7612-3_1
  26. [26] O. D. Makinde, K. O. Okosun, Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. Biosystems 104(1), 32–41, (2011), https://doi.org/10.1016/j.biosystems.2010.12.01010.1016/j.biosystems.2010.12.01021219965
  27. [27] F. Maturo, Unsupervised classification of ecological communities ranked according to their bio-diversity patterns via a functional principal component decomposition of Hill’s numbers integral functions, Ecological Indicators 90, 305–315, doi: 10.1016/j.ecolind.2018.03.013, (2018).10.1016/j.ecolind.2018.03.013
  28. [28] F. Maturo, T. Di Battista, A functional approach to Hill’s numbers for assessing changes in species variety of ecological communities over time, Ecological Indicators 84, 70–81 doi:10.1016/j.ecolind.2017.08.016, (2018).10.1016/j.ecolind.2017.08.016
  29. [29] S. Olaniyi, K. O. Okosun, S. O. Adesanya, R. S. Lebelo, Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis, J Biol Dynam. 14(1), 90–115, (2020), doi: 10.1080/17513758.2020.1722265.10.1080/17513758.2020.172226532046615
  30. [30] P. Otrisal, V. Obsel, J. Buk, L. Svorc. Preparation of Filtration Sorptive Materials from Nanofibers, Bicofibers, and Textile Adsorbents without Binders Employment. Nanomaterials 8(8), 564, doi: 10.3390/nano8080564. (2018).10.3390/nano8080564611621930042303
  31. [31] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Wiley, New York, (1962).
  32. [32]R. Potuček, Life Cycle of the Crisis Situation Threat and Its Various Models, Studies in Systems, Decision and Control 208, 443–461, https://doi.org/10.1007/978-3-030-18593-032, (2020).10.1007/978-3-030-18593-0_32
  33. [33] J. P. Romero-Leiton, J. M. Montoya-Aguilar, E. Ibargen-Mondragn, An optimal control problem applied to malaria disease in Colombia, Appl. Math. Sci. 12(6), 279–292, doi:10.12988/ams.2018.819, (2018).10.12988/ams.2018.819
  34. [34] I. Svarcova, B. Ptacek, J. Navratil, Psychological Intervention as Support in Disaster Preparedness, In: Crisis Management and Solution of the Crisis Situations 2015, 317–320, (2015).
  35. [35] I. Svarcova, S. Hoskova-Mayerova, J. Navratil, Crisis Management and Education in Health, The European Proceedings of Social & Behavioural Sciences EpSBS, XVI, p. 255–261. http://dx.doi.org/10.15405/epsbs.2016.11.26(2016).
  36. [36]I. Tuser, The development of education in emergency management, Studies in Systems, Decision and Control 247, pp. 169-175, doi: 10.1007/978-3-030-30659-5 10, (2020).10.1007/978-3-030-30659-5
  37. [37] WHO, Malaria, fact sheets, http://www.who.int/inf-fs/en/fact094.html (2020).
DOI: https://doi.org/10.2478/auom-2021-0019 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 71 - 91
Submitted on: Jul 2, 2020
|
Accepted on: Aug 31, 2020
|
Published on: Jul 8, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 E.A. Bakare, B.O. Onasanya, S. Hoskova-Mayerova, O. Olubosede, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.