Have a personal or library account? Click to login
The extensibility of the Diophantine triple {2, b, c} Cover

References

  1. [1] N. Adžaga, A. Dujella, D. Kreso and P. Tadić, Triples which are D(n)-sets for several n’s, J. Number Theory 184 (2018), 330–341.10.1016/j.jnt.2017.08.024
  2. [2] J. Arkin, V. E. Hoggatt and E. G. Strauss, On Eulers solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), 333–339.
  3. [3] M. Cipu, A. Filipin and Y. Fujita, Bounds for Diophantine quintuples II, Publ. Math. Debrecen 86 (2016), 59–78.10.5486/PMD.2016.7257
  4. [4] M. Cipu, Y. Fujita and T. Miyazaki, On the number of extensions of a Diophantine triple, Int. J. Number Theory 14 (2018), 899-917.10.1142/S1793042118500549
  5. [5] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number Theory 89 (2001), 126–150.10.1006/jnth.2000.2627
  6. [6] A. Dujella, Diophantine m-tuples, http://web.math.pmf.unizg.hr/~duje/dtuples.html
  7. [7] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183–214.
  8. [8] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), 49 (1998), 291–306.10.1093/qmathj/49.3.291
  9. [9] Y. Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129 (2009), 1678-1697.10.1016/j.jnt.2009.01.001
  10. [10] P. Gibbs, A generalised Stern-Brocot tree from regular Diophantine quadruples, XXX Mathematics Archive math.NT/9903035.
  11. [11] B. He, A. Pinter, A. Togbé and S. Yang, Another generalization of a theorem of Baker and Davenport, J. Number Theory 182 (2018), 325-343.10.1016/j.jnt.2017.07.003
  12. [12] B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.10.1090/tran/7573
  13. [13] M. Laurent, Linear forms in two logarithms and interpolation determi nants II, Acta Arith. 133 (4) (2008), 325–348.10.4064/aa133-4-3
  14. [14] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
DOI: https://doi.org/10.2478/auom-2021-0016 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 24
Submitted on: Oct 14, 2020
Accepted on: Nov 15, 2020
Published on: Jul 8, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Nikola Adžaga, Alan Filipin, Ana Jurasić, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.