Have a personal or library account? Click to login
Topological Transversality Coincidence Theory for Multivalued Maps with Selections in a Given Class Cover

Topological Transversality Coincidence Theory for Multivalued Maps with Selections in a Given Class

By: Donal O’Regan  
Open Access
|Apr 2021

References

  1. [1]. G. Gabor, L. Gorniewicz and M. Slosarski, Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Anal.,17(2009), 1–19.10.1007/s11228-009-0106-3
  2. [2]. A. Granas, Sur la méthode de continuité de Poincaré, C.R. Acad. Sci. Paris,282(1976), 983–985.
  3. [3]. D. O’Regan, Essential maps and coincidence principles for general classes of maps, Filomat,31(2017), 3553–3558.10.2298/FIL1711553O
  4. [4]. D. O’Regan, Topological transversality principles and general coincidence theory, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat.,25(2017), 159–170.10.1515/auom-2017-0027
  5. [5]. R. Precup, On the topological transversality principle, Nonlinear Anal.,20(1993), 1–9.10.1016/0362-546X(93)90181-Q
DOI: https://doi.org/10.2478/auom-2021-0013 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 201 - 209
Submitted on: Apr 3, 2020
Accepted on: May 3, 2020
Published on: Apr 13, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Donal O’Regan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.