Have a personal or library account? Click to login
Coincidence and Common Fixed Point Theorems via ϱ-Class Functions in Elliptic Valued Metric Spaces Cover

Coincidence and Common Fixed Point Theorems via ϱ-Class Functions in Elliptic Valued Metric Spaces

Open Access
|Apr 2021

References

  1. [1] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32 (3), (2011), 243–253.10.1080/01630563.2011.533046
  2. [2] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Computers Mathematics with Applications, 64(6), (2012), 1866-1874.10.1016/j.camwa.2012.02.063
  3. [3] A. Harkin, J. Harkin, Geometry of generalized complex numbers, Mathematics Magazine, 77(2), (2004) 118-129.10.1080/0025570X.2004.11953236
  4. [4] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332, (2007), 1468–1476.10.1016/j.jmaa.2005.03.087
  5. [5] A. H. Ansari, Ö. Ege, S. Radenović, Some fixed point results on complex valued Gb-metric spaces, Rev. de la Real Academia de Cienc. Exactas, Fsicas y Naturales. Serie A. Matemticas, 112, (2018), 463-472. https://doi.org/10.1007/s13398-017-0391-x.10.1007/s13398-017-0391-x
  6. [6] A.H. Ansari, Note on ϕ − ψ -contractive type mappings and related fixed point, The Second Regional Conference on Mathematics and Applications, Payame Noor University, (2004), 377–380.
  7. [7] B. S. Choudhury, N. Metiya, Fixed point results for mapping satisfying rational inequality in complex valued metric spaces, J. Adv. Math. Stud., 7, (2014), 80–90.10.1155/2014/827862
  8. [8] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9, (1986), 771–779.10.1155/S0161171286000935
  9. [9] N. Bajaj, Some maps on unique common fixed points, Indian J. Pure Appl. Math., 15(8), (1984), 843–848.
  10. [10] B. Fisher, M. S. Khan, Fixed points, common fixed points and constant mappings, Studia Sci. Math. Hungar., 11, (1978), 467–470.
  11. [11] B. Fisher, Common fixed point and constant mappings satisfying a rational inequality, Math. Sem. Notes. Kobe Univ., 6, (1978), 29–35.
  12. [12] P. L. Sharma, N. Bajaj, Fixed point theorem for mappings satisfying rational inequalities, Jnanabha, 13, (1983), 107–112.
  13. [13] B. Singh, R. K. Sharma, Common fixed point theorems, Jnanabha, 29, (1999), 25–30.
  14. [14] W. K. Clifford, Mathematical Papers (ed. R. Tucker), Chelsea Pub. Co., Bronx, NY, (1968).
  15. [15] E. Study, Geometrie der dynamen, Leipzig, (1903).
  16. [16] B. Moeini, M. Asadi, H. Aydi, M. S. Noorani, C*-algebra-valued M-metric spaces and some related fixed point results, Italian J. Pure and Applied Math., 41, (2019), 708–723.
DOI: https://doi.org/10.2478/auom-2021-0011 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 165 - 182
Submitted on: Jun 25, 2020
Accepted on: Aug 1, 2020
Published on: Apr 13, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Mahpeyker Öztürk, Işıl A. Kösal, Hidayet H. Kösal, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.