Have a personal or library account? Click to login
Qualitative results in thermoelasticity of type III for dipolar bodies Cover
By: M. Marin,  S. Vlase and  A. Öchsner  
Open Access
|Apr 2021

References

  1. [1] Green, A.E., Naghdi, On Undamped Heat Waves in an Elastic Solid. J. Therm. Stresses. 15(1992), 253-264.
  2. [2] Green, A.E., Naghdi, P.M., Thermoelasticity without Energy Dissipation, J. Elasticity, 31 (1993), 189-208.10.1007/BF00044969
  3. [3] Green, A.E., Naghdi, P.M., A Unified Procedure for Construction of Theories of Deformable Media. I. Classical Continuum Physics, II. Generalized Continua, III. Linear Theory of Thermoelasticity III 889 Mixtures of Interacting Continua, Proc. Roy. Soc. London A, 448 (1995), 335356, 357377, 379388.
  4. [4] Quintanilla, R., Straughan, B., A Note on Discontinuity Waves in Type III Thermoelasticity. Proc. Roy. Soc. London A. 460 (2004), 11691175.10.1098/rspa.2003.1131
  5. [5] Quintanilla, R., Straughan, B., Energy Bounds for Some Non-Standard Problems in Thermoelasticity. Proc. Roy. Soc. London A. 461 (2005), 11471162.10.1098/rspa.2004.1381
  6. [6] Leseduarte, M.C., Quintanilla, R., Thermal Stresses in Type III Thermoelastic Plates, J. Thermal Stresses, 29(2006), 485503.10.1080/01495730500373446
  7. [7] Quintanilla, R., Racke, R., Stability in Thermoelasticity of Type III, Discrete Contin. Dynam. Syst. B, 3 (2003), 383400.10.3934/dcdsb.2003.3.383
  8. [8] Ciarletta, M., On the Uniqueness and Continuous Dependence of Solutions in Dyna-mical Thermoelasticity Backward in Time. J Therm Stresses 25(2002), 969-984.
  9. [9] Eringen, A.C., Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28 (1990), 1291-1301.
  10. [10] Eringen, A.C. Microcontinuum Field Theories. Springer, New York, 1999.10.1007/978-1-4612-0555-5
  11. [11] Mindlin, R.D., Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16 (1964), 51-78.10.1007/BF00248490
  12. [12] Green, A.E., Rivlin, R.S., Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17 (1964), 113-147.10.1007/BF00253051
  13. [13] Fried, E., Gurtin, M.E., Thermomechanics of the interface between a body and its environment”, Continuum Mech Therm 19(5) (2007), 253-271.10.1007/s00161-007-0053-x
  14. [14] Abbas, I., Marin, M., Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating, Physica E Low Dimens. Syst. Nanostruct., 87(2017), 254-26010.1016/j.physe.2016.10.048
  15. [15] Marin, M., Some basic theorems in elastostatics of micropolar materials with voids, J Comput Appl Math, 70(10)(1996), 115-12610.1016/0377-0427(95)00137-9
  16. [16] Vlase, S., Marin, M.,Öchsner, A., Scutaru, M.L., Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system, Continuum Mechanics and Thermodynamics, 31(3), 715-724, 201910.1007/s00161-018-0722-y
  17. [17] Marin, M. On the minimum principle for dipolar materials with stretch, Nonlinear Analysis: RWA, Nonlinear Anal-Real, 10(3)(2009), 1572-157810.1016/j.nonrwa.2008.02.001
  18. [18] Marin, M., A partition of energy in thermoelasticity of microstretch bodies, Nonliner Analysis: RWA, 11(4)(2010), 2436-244710.1016/j.nonrwa.2009.07.014
  19. [19] Marin, M., Florea, O., On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies, An. St. Univ. Ovidius Constanta, 22(1)(2014), 169-188.10.2478/auom-2014-0014
  20. [20] Marin, M., Lupu, M., On harmonic vibrations in thermoelasticity of micropolar bodies, Journal of Vibration and Control, 4(5)(1998), 507-51810.1177/107754639800400501
  21. [21] Marin, M., On existence and uniqueness in thermoelasticity of micropolar bodies, Comptes rendus de l’Acadmie des sciences Paris, Srie II, B, 321(12), 375-480, 1995
  22. [22] Katouzian, M., Vlase, S., et al., Experimental procedures to determine the viscoelastic parameters of laminated composites, J Optoelectron Adv M, 13(9-10)(2011), 1185-1188.
  23. [23] Abd-Elaziz, E.M., Marin, M., Othman, M.I.A., On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory, Symmetry, Basel, 11(3)(2019), Art. No. 413
  24. [24] Svanadze, M., Scalia, A., Mathematical problems in the coupled linear theory of bone poroelasticity, Comput Math Appl, 66(9)(2013), 1554-1566.10.1016/j.camwa.2013.01.046
  25. [25] Kecs, W.W., Toma, A., The quasi-static generalized equation of the vibrations of the elastic bars with discontinuities, Proc. Ro. Acad. Series A, 15(4)(2014), 315-402.
DOI: https://doi.org/10.2478/auom-2021-0009 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 127 - 142
Submitted on: May 1, 2020
Accepted on: Jun 1, 2020
Published on: Apr 13, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 M. Marin, S. Vlase, A. Öchsner, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.