References
- [1] B. Ahmadi Kakavandi and M. Amini, Non-linear ergodic theorems in complete non-positive curvature metric spaces, Bull. Iranian Math. Soc. 37 (2011), no. 3, 11–20.
- [2] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), no. 8, 2350 – 2360.
- [3] M. Bacak, Convex analysis and optimization in Hadamard spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22. De Gruyter, 2014.10.1515/9783110361629
- [4] G. Birkhoff, The mean ergodic theorem, Duke Math. J. 5 (1939), no. 1, 19–20.
- [5] M. R. Bridson and A. Hafliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 2011.
- [6] P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl. 320 (2006), no. 2, 983 – 987.
- [7] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), no. 5, 509–541.
- [8] H. Khatibzadeh and S. Ranjbar, On the Halpern iteration in CAT(0) spaces, Ann. Funct. Anal. 6 (2015), no. 3, 155–165.
- [9] W. A. Kirk, Geodesic geometry and fixed point theory II, Proceedings of the International Conference in Fixed Point Theory and Applications (Valencia, Spain), 2003, pp. 113–142.
- [10] M. K. Kuo, Tauberian conditions for almost convergence, Positivity 13 (2009), no. 4, 611–619.
- [11] T. Liimatainen, Optimal Riemannian metric for a volumorphism and a mean ergodic theorem in complete global Alexandrov nonpositively curved spaces, Analysis, geometry and quantum field theory, Contemp. Math., vol. 584, Amer. Math. Soc., Providence, RI, 2012, pp. 163–178.10.1090/conm/584/11593
- [12] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.10.1007/BF02393648
- [13] A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, IRMA lectures in mathematics and theoretical physics, European Mathematical Society, 2005.10.4171/010
- [14] A. Pazy, On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space, Israel J. Math. 26 (1977), no. 2, 197–204.
- [15] S. Saejung, Halpern’s iteration in CAT(0) spaces, Fixed Point Theory Appl. (2010), Art. ID 471781, 13.
- [16] K. T. Sturm, Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 357–390.10.1090/conm/338/06080
- [17] J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA 18 (1932), no. 1, 70–82.