Have a personal or library account? Click to login
A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces Cover

A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces

Open Access
|Apr 2021

References

  1. [1] B. Ahmadi Kakavandi and M. Amini, Non-linear ergodic theorems in complete non-positive curvature metric spaces, Bull. Iranian Math. Soc. 37 (2011), no. 3, 11–20.
  2. [2] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), no. 8, 2350 – 2360.
  3. [3] M. Bacak, Convex analysis and optimization in Hadamard spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22. De Gruyter, 2014.10.1515/9783110361629
  4. [4] G. Birkhoff, The mean ergodic theorem, Duke Math. J. 5 (1939), no. 1, 19–20.
  5. [5] M. R. Bridson and A. Hafliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 2011.
  6. [6] P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl. 320 (2006), no. 2, 983 – 987.
  7. [7] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), no. 5, 509–541.
  8. [8] H. Khatibzadeh and S. Ranjbar, On the Halpern iteration in CAT(0) spaces, Ann. Funct. Anal. 6 (2015), no. 3, 155–165.
  9. [9] W. A. Kirk, Geodesic geometry and fixed point theory II, Proceedings of the International Conference in Fixed Point Theory and Applications (Valencia, Spain), 2003, pp. 113–142.
  10. [10] M. K. Kuo, Tauberian conditions for almost convergence, Positivity 13 (2009), no. 4, 611–619.
  11. [11] T. Liimatainen, Optimal Riemannian metric for a volumorphism and a mean ergodic theorem in complete global Alexandrov nonpositively curved spaces, Analysis, geometry and quantum field theory, Contemp. Math., vol. 584, Amer. Math. Soc., Providence, RI, 2012, pp. 163–178.10.1090/conm/584/11593
  12. [12] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.10.1007/BF02393648
  13. [13] A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, IRMA lectures in mathematics and theoretical physics, European Mathematical Society, 2005.10.4171/010
  14. [14] A. Pazy, On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space, Israel J. Math. 26 (1977), no. 2, 197–204.
  15. [15] S. Saejung, Halpern’s iteration in CAT(0) spaces, Fixed Point Theory Appl. (2010), Art. ID 471781, 13.
  16. [16] K. T. Sturm, Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 357–390.10.1090/conm/338/06080
  17. [17] J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA 18 (1932), no. 1, 70–82.
DOI: https://doi.org/10.2478/auom-2021-0008 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 111 - 125
Submitted on: Apr 1, 2020
Accepted on: May 4, 2020
Published on: Apr 13, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Hadi Khatibzadeh, Hadi Pouladi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.