Have a personal or library account? Click to login
Invariance property of a five matrix product involving two generalized inverses Cover

Invariance property of a five matrix product involving two generalized inverses

By: Bo Jiang and  Yongge Tian  
Open Access
|Apr 2021

References

  1. [1] J.K. Baksalary, O.M. Baksalary. An invariance property related to the reverse order law. Linear Algebra Appl. 410(2005), 64–69.
  2. [2] A. Ben–Israel, T.N.E. Greville. Generalized Inverses: Theory and Applications. 2nd ed., Springer, New York, 2003.
  3. [3] S.L. Campbell, C.D. Meyer. Generalized Inverses of Linear Transformations. Corrected reprint of the 1979 original, Dover, New York, 1991.
  4. [4] J. Groß, Y. Tian. Invariance properties of a triple matrix product involving generalized inverses. Linear Algebra Appl. 417(2006), 94–107.
  5. [5] R.E. Hartwig. The reverse order law revisited. Linear Algebra Appl. 76(1986), 241–246.10.1016/0024-3795(86)90226-0
  6. [6] B. Jiang, Y. Tian. Necessary and sufficient conditions for nonlinear matrix identities to always hold. Aequat. Math. 93(2019), 587–600.
  7. [7] X. Liu, M. Zhang, Y. Yu. Note on the invariance properties of operator products involving generalized inverses. Abstr. Appl. Anal. 2014, Art. ID 213458, 1–9.
  8. [8] G. Marsaglia, G.P.H. Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2(1974), 269–292.10.1080/03081087408817070
  9. [9] C.R. Rao, S.K. Mitra. Generalized Inverse of Matrices and Its Applications. Wiley, New York, 1971.
  10. [10] Y. Tian. Reverse order laws for the generalized inverses of multiple matrix products. Linear Algebra Appl. 211(1994), 85–100.10.1016/0024-3795(94)90084-1
  11. [11] Y. Tian. A family of 512 reverse order laws for generalized inverses of two matrix product: a review. Heliyon 6(2020), e04924.10.1016/j.heliyon.2020.e04924752761133024854
  12. [12] Y. Tian. Classification analysis to the equalities A(i,...,j) = B(k,...,l) for generalized inverses of two matrices. Linear Multilinear Algebra, 2021, doi:10.1080/03081087.2019.1627279.10.1080/03081087.2019.1627279
  13. [13] Y. Tian, Y. Liu. On a group of mixed-type reverse-order laws for generalized inverses of a triple matrix product with applications. Electron. J. Linear Algebra 16(2007), 73–89.
  14. [14] Y. Tian, G.P.H. Styan. On some matrix equalities for generalized inverses with applications. Linear Algebra Appl. 430(2009), 2716–2733.
  15. [15] H.J. Werner, When is B−A− a generalized inverse of AB?. Linear Algebra Appl. 210(1994), 255–263.
  16. [16] Z. Xiong, Y. Qin. Invariance properties of an operator product involving generalized inverses. Electron. J. Linear Algebra 22(2011), 694–703.
DOI: https://doi.org/10.2478/auom-2021-0006 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 83 - 92
Submitted on: Nov 1, 2019
Accepted on: May 4, 2020
Published on: Apr 13, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Bo Jiang, Yongge Tian, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.