Have a personal or library account? Click to login
Stochastic orders for a multivariate Pareto distribution Cover

References

  1. [1] Arnold B.C. (1983). Pareto Distributions, Silver Spring, Maryland: International Cooperative Publishing House.
  2. [2] Arnold B.C., Pourahmadi M. (1988). Conditional characterizations of multivariate distributions. Metrika, 35, 99-108.10.1007/BF02613292
  3. [3] Balakrishnan N., Barmalzan G., Haidari A. (2016). Multivariate stochastic comparisons of multivariate mixture models and their applications. Journal of Multivariate Analysis, 145, 37-43.10.1016/j.jmva.2015.11.013
  4. [4] Balakrishnan N., Rao C.R. (1998). Order Statistics: Applications. Handbook of Statistics 17, North-Holland, Amsterdam.
  5. [5] Bancescu I. (2018). Some classes of statistical distributions. Properties and Applications. Analele Stiintifice ale Universitatii Ovidius Constanta, 26(1), 43-68, DOI: 10.2478/auom-2018-0002.10.2478/auom-2018-0002
  6. [6] Catana L. I. (2016). A property of unidimensional distributions which is lost in multidimensional case. Gazeta Matematica, Seria A, 3-4, 39-41.
  7. [7] Catana L. I. (2019). Multivariate weak hazard rate order according to hazard rate function. Gazeta Matematica, Seria A, 1-2, 27-30.
  8. [8] Kotz S., Balakrishnan N., Johnson N.L. (2000). Continuous Multivariate Distributions, Volume 1: Models and Applications, Second edition. A Wiley-Interscience Publication.
  9. [9] Mardia K.V. (1962). Multivariate Pareto distributions. Annals of Mathematical Statistics, 33, 1008-1015.10.1214/aoms/1177704468
  10. [10] Misra N., Naqvi S. (2018): A unified approach to stochastic comparisons of multivariate mixture models, Communications in Statistics - Theory and Methods, 0, 1-17, DOI: 10.1080/03610926.2018.144585910.1080/03610926.2018.1445859
  11. [11] Nadarajah S., Jiang X., Chu J. (2017). Comparisons of smallest order statistics from Pareto distributions with different scale and shape parameters. Ann Oper Res, Springer.10.1007/s10479-017-2444-0
  12. [12] Preda V., Bancescu I. (2016). A new family of distributions with a general generic distribution for reliability studies. Log-concavity and application, International Journal of Risk Theory, Alexandru Myller Publishing Iasi, 1(6), 13-38.
  13. [13] Samaniego F. J., System signatures and their applications in Engineering Reliability, Springer (2007).10.1007/978-0-387-71797-5
  14. [14] Shaked M., Shanthikumar J. G. (2007). Stochastic orders. New York: Springer.10.1007/978-0-387-34675-5
  15. [15] Wesolowski J., Ahsanullah M. (1995). Conditional specification of multivariate Pareto and Student distributions. Communications in Statistics-Theory and Methods, 24, 1023-1031.10.1080/03610929508831537
  16. [16] Zbaganu G. (2004). Mathematical methods in risck theory and actuarial(in roumanian language). Editura Universitatii Bucuresti.
DOI: https://doi.org/10.2478/auom-2021-0004 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 53 - 69
Submitted on: Mar 10, 2020
Accepted on: May 4, 2020
Published on: Apr 13, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Luigi-Ionut Catana, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.