Have a personal or library account? Click to login
New Curiosity Bivariate Quadratic Quaternionic Polynomials and Their Roots Cover
By: Ilker Akkus and  Gonca Kizilaslan  
Open Access
|Apr 2021

References

  1. [1] I. Akkus, G. Kizilaslan, Some new quater. quad. with zeros in terms of sec. ord. quater. recur., Advances Appl. Clif. Algebras, 29 (1) (2019), Art. 14, 14 pp.10.1007/s00006-018-0931-2
  2. [2] U. Bray, G. Whaples, Polynom. with coeffic. from a div. ring, Can. J. Math., (35) (1983), 509–515.10.4153/CJM-1983-028-1
  3. [3] J. H. E. Cohn, The Diop. equat. x4 − Dy2 = 1 II, Acta Arithmetica, (78) (4) (1997), 401–403.10.4064/aa-78-4-401-403
  4. [4] T. W. Cusick, The Diop. equat. x4 − kx2y2 + y4 = 1, Arch. Math., (59) (4) (1992), 345–347.10.1007/BF01197050
  5. [5] C. Flaut, V. S. Shpakivskyi, An effic. meth. for solv. equat. in gen. quat. and octon. algeb., Advances Appl. Clifford Algebras, (25)(2) (2015), 337–350.10.1007/s00006-014-0493-x
  6. [6] B. Gordon, T. S. Motzkin, On the zeros of poly. over div. ring, Transaction American Mathematical Soc., (116) (1965), 218–226.10.1090/S0002-9947-1965-0195853-2
  7. [7] A. F. Horadam, Comp. Fib. numb. and Fib. quater., Amer. Math. Month., (70) (3) (1963), 289–291.
  8. [8] A. İpek, On (p, q)−Fib. quat. and their Binet form., gener. func. and certain binom. sums, Advances Applied Cliff. Algebras, 27 (2) (2017), 1343–1351.10.1007/s00006-016-0704-8
  9. [9] C. Kimberling, Fib. hyper., Fib. Quarterly, (28) (1) (1990), 22–27.
  10. [10] W. L. McDaniel, Diop. repres. of Lucas seq., Fib. Quart., (33) (1995), 59–63.
  11. [11] I. Niven, Equat. in quater., Amer. Math. Month., (48) (1941), 654–661.10.1080/00029890.1941.11991158
  12. [12] T. Sakkalis, K. Ko, G. Song, Roots of quat. poly.: theory and comput., Theoret. Computer Science, (800) (2019), 173–178.10.1016/j.tcs.2019.10.024
  13. [13] D.F. Scharler, J. Siegele, H.P. Schröcker, Quad. split quater. poly.: fact. and geom., Advances Appl. Cliff. Algebras, (30) (1)(2020), Art. 11, 23 pp.
  14. [14] R. Serôdio, E. Pereira, J. Vitória, Comput. the zeros of quat. poly., Comput. Math. Appl., (42) (8–9) (2001), 1229–1237.10.1016/S0898-1221(01)00235-8
  15. [15] V. S. Shpakivskyi, Lin. quat. equat. and their sys., Advances Appl. Cliff. Algeb., (21) (2011), 637–645.10.1007/s00006-010-0264-2
  16. [16] J. Zhigang, C. Xuehan, Z. Meixiang, A new method for roots of monic quat. quad. poly., Comput. Math. Appl., (58) (9) (2009), 1852–1858.10.1016/j.camwa.2009.08.034
DOI: https://doi.org/10.2478/auom-2021-0001 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 16
Submitted on: Mar 1, 2020
Accepted on: May 1, 2020
Published on: Apr 13, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Ilker Akkus, Gonca Kizilaslan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.