Have a personal or library account? Click to login
Null scrolls with prescribed curvatures in Lorentz-Minkowski 3-space Cover

References

  1. [1] C. Baikoussis and T. Koufogiorgos, Helicoidal surfaces with prescribed mean or Gaussian curvature, Journal of Geometry, 63(1)(1998), pp. 25–29.10.1007/BF01221235
  2. [2] C. C. Beneki, G. Kaimakamis and B. J. Papantoniou, Helicoidal surfaces in three dimensional Minkowski space, Journal of Mathematical Analysis and Applications, 275 (2002), pp. 586–614.10.1016/S0022-247X(02)00269-X
  3. [3] S. Chanillo and M. Kiessling, Surfaces with prescribed Gauss curvature, Duke Mathematical Journal, 105(2) (2000), pp. 309–353.10.1215/S0012-7094-00-10525-X
  4. [4] M. Do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Mathematical Journal, 34 (1982), pp. 425–435.10.2748/tmj/1178229204
  5. [5] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of semi-Riemannian Manifolds and Applications, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1996.10.1007/978-94-017-2089-2
  6. [6] J. I. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tohoku Mathematical Journal, 36 (1984), pp. 427–437.10.2748/tmj/1178228808
  7. [7] J. Inoguchi and S. Lee, Null curves in Minkowski 3-space, International Electronic Journal of Geometry, 1 (2008), pp. 40–83.
  8. [8] K. Kenmotsu, Surfaces of revolution with prescribed mean curvature, Tohoku Mathematical Journal, 32 (1980), pp. 147–153.10.2748/tmj/1178229688
  9. [9] S. Lee and J. H. Varnado, Spacelike constant mean curvature surfaces of revolution in Minkowski 3-space, Differential Geometry - Dynamical Systems, 8 (2006), pp. 144–165.
  10. [10] S. Lee and J. H. Varnado, Timelike surfaces of revolution with constant mean curvature in Minkowski 3-space, Differential Geometry - Dynamical Systems, 9 (2007), pp. 82–102.
  11. [11] Ž. Milin Šipuš, Lj. Primorac Gajčić and I. Protrka, Null scrolls as B-scrolls in Lorentz-Minkowski 3-space, Turkish Journal of Mathematics, 43(6) (2019), pp. 2908–2920, doi: 10.3906/mat-1904-14010.3906/mat-1904-140
  12. [12] W. T. Reid, Riccati Differential Equations, New York: Academic Press, 1972.
  13. [13] J. Tafel, Surfaces in 𝕉3 with prescribed curvature, Journal of Geometry and Physics, 17(4) (1995), pp. 381–390.10.1016/0393-0440(94)00054-9
DOI: https://doi.org/10.2478/auom-2020-0043 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 229 - 240
Submitted on: Jan 22, 2020
Accepted on: Feb 29, 2020
Published on: Dec 28, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Željka Milin Šipuš, Ljiljana Primorac Gajčić, Ivana Protrka, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.