Have a personal or library account? Click to login
The modified Ishikawa iteration process with errors in CAT(0) spaces Cover
By: Sajad Ranjbar  
Open Access
|Dec 2020

References

  1. [1] Bridson, M. and Haefliger, A., Metric Spaces of Non-Positive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999.10.1007/978-3-662-12494-9
  2. [2] Brown, K.S., Buildings, Springer, New York, NY, USA, 1989.
  3. [3] Bruck, R.E., Kuczumow, T. and Reich, S., Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloqium Math. LXV. 169-179 (1993)10.4064/cm-65-2-169-179
  4. [4] Dhompongsa, S., Kirk, W.A. and Panyanak, B., Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8(1) (2007), pp. 35-45.
  5. [5] Dhompongsa, S., Kirk, W.A. and Sims, B., Fixed points of uniformly Lip-schitzian mappings, Nonlinear Anal. Theory Methods Appl. 65(4) (2006), pp. 762-772.10.1016/j.na.2005.09.044
  6. [6] Dhompongsa, S. and Payanak, B., On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), pp. 2572-2579.10.1016/j.camwa.2008.05.036
  7. [7] Geobel, K. and Kirk, W.A., A fixed point theorem for asymptotically non-expansive mappings, Proc. Amer. Math. Soc. 35 (1972), pp. 171-174.10.1090/S0002-9939-1972-0298500-3
  8. [8] Goebel, K. and Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 83 (1984).
  9. [9] Hussain, N. and Khamsi, M.A., On asymptotic pointwise contractions in metric spaces, Nonlinear Anal. 71 (2009), pp. 4423-4429.10.1016/j.na.2009.02.126
  10. [10] Kirk, W.A., Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive types, Israel J. Math. 17 (1974), pp. 339-346.10.1007/BF02757136
  11. [11] Kirk, W.A., Fixed point theorems in CAT(0) spaces and 𝕉-trees, Fixed Point Theory Appl., vol. 4 (2004), pp. 309-316.
  12. [12] Kirk, W.A., Geodesic geometry and fixed point theory. II, in International Conference on Fixed Point Theory and Applications, pp. 113-142, Yokohama Publ., 2004.10.1155/S1687182004406081
  13. [13] Kirk, W.A., Geodesic geometry and fixed point theory, in Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), vol. 64 of Colecc. Abierta, pp.195-225, Universidad de Sevilla Secr. Publ., Seville, Spain, 2003.
  14. [14] Kirk, W.A. and Panyanak, B., A concept of convergence in geodesic spaces, Nonlinear Anal. Theory Methods Appl. 68 (2006), pp. 3689-3696.10.1016/j.na.2007.04.011
  15. [15] Kaczor, W. and Walczuk, J., A mean ergodic theorem for mappings which are asymptotically nonexpansive in the intermediate sense, Nonlinear Anal. Theory Methods Appl. 47 (2001), pp. 2731-2742.10.1016/S0362-546X(01)00392-3
  16. [16] Lim, T.C., Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), pp. 179-182.10.1090/S0002-9939-1976-0423139-X
  17. [17] Nanjaras, B. and Panyanak, B., Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. (2010). (Article ID 268780)10.1155/2010/268780
  18. [18] Osilike., M.O. and Aniagbosor, SC., Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling, 32 (2000), pp. 1181-1191.10.1016/S0895-7177(00)00199-0
  19. [19] Panyanak, P. and Loakul. T., On the Ishikawa iteration process in CAT(0) spaces, Bull. Iranian Math. Soc., 37 (2011), pp. 185-197.
  20. [20] Rhoades, B.E. and Soltuz, S.M., The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl. 289 (2004), pp. 266-278.10.1016/j.jmaa.2003.09.057
  21. [21] Schu, j., Weak and strong convergence to fixed of asymptotically nonexpansive mappings, Bull. Australian Math. Soc. 43 (1991), pp. 153-159.10.1017/S0004972700028884
  22. [22] Tan, K.K. and Xu, H.K., Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (2011), pp. 733-739.10.1090/S0002-9939-1994-1203993-5
  23. [23] Xu, H.K., Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. Theory Methods Appl. 16 (1991), pp. 1139-1146.10.1016/0362-546X(91)90201-B
  24. [24] Zhang, J. and Cui, Y., Existence and convergence of fixed points for mappings of asymptotically nonexpansive type in uniformly convex W-hyperbolic spaces, Fixed Point Theory Appl. (2011).10.1186/1687-1812-2011-39
DOI: https://doi.org/10.2478/auom-2020-0042 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 217 - 228
Submitted on: Jan 12, 2020
Accepted on: Feb 20, 2020
Published on: Dec 28, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Sajad Ranjbar, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.