References
- [1] Bridson, M. and Haefliger, A., Metric Spaces of Non-Positive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999.10.1007/978-3-662-12494-9
- [2] Brown, K.S., Buildings, Springer, New York, NY, USA, 1989.
- [3] Bruck, R.E., Kuczumow, T. and Reich, S., Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloqium Math. LXV. 169-179 (1993)10.4064/cm-65-2-169-179
- [4] Dhompongsa, S., Kirk, W.A. and Panyanak, B., Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8(1) (2007), pp. 35-45.
- [5] Dhompongsa, S., Kirk, W.A. and Sims, B., Fixed points of uniformly Lip-schitzian mappings, Nonlinear Anal. Theory Methods Appl. 65(4) (2006), pp. 762-772.10.1016/j.na.2005.09.044
- [6] Dhompongsa, S. and Payanak, B., On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), pp. 2572-2579.10.1016/j.camwa.2008.05.036
- [7] Geobel, K. and Kirk, W.A., A fixed point theorem for asymptotically non-expansive mappings, Proc. Amer. Math. Soc. 35 (1972), pp. 171-174.10.1090/S0002-9939-1972-0298500-3
- [8] Goebel, K. and Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 83 (1984).
- [9] Hussain, N. and Khamsi, M.A., On asymptotic pointwise contractions in metric spaces, Nonlinear Anal. 71 (2009), pp. 4423-4429.10.1016/j.na.2009.02.126
- [10] Kirk, W.A., Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive types, Israel J. Math. 17 (1974), pp. 339-346.10.1007/BF02757136
- [11] Kirk, W.A., Fixed point theorems in CAT(0) spaces and -trees, Fixed Point Theory Appl., vol. 4 (2004), pp. 309-316.
- [12] Kirk, W.A., Geodesic geometry and fixed point theory. II, in International Conference on Fixed Point Theory and Applications, pp. 113-142, Yokohama Publ., 2004.10.1155/S1687182004406081
- [13] Kirk, W.A., Geodesic geometry and fixed point theory, in Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), vol. 64 of Colecc. Abierta, pp.195-225, Universidad de Sevilla Secr. Publ., Seville, Spain, 2003.
- [14] Kirk, W.A. and Panyanak, B., A concept of convergence in geodesic spaces, Nonlinear Anal. Theory Methods Appl. 68 (2006), pp. 3689-3696.10.1016/j.na.2007.04.011
- [15] Kaczor, W. and Walczuk, J., A mean ergodic theorem for mappings which are asymptotically nonexpansive in the intermediate sense, Nonlinear Anal. Theory Methods Appl. 47 (2001), pp. 2731-2742.10.1016/S0362-546X(01)00392-3
- [16] Lim, T.C., Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), pp. 179-182.10.1090/S0002-9939-1976-0423139-X
- [17] Nanjaras, B. and Panyanak, B., Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. (2010). (Article ID 268780)10.1155/2010/268780
- [18] Osilike., M.O. and Aniagbosor, SC., Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling, 32 (2000), pp. 1181-1191.10.1016/S0895-7177(00)00199-0
- [19] Panyanak, P. and Loakul. T., On the Ishikawa iteration process in CAT(0) spaces, Bull. Iranian Math. Soc., 37 (2011), pp. 185-197.
- [20] Rhoades, B.E. and Soltuz, S.M., The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl. 289 (2004), pp. 266-278.10.1016/j.jmaa.2003.09.057
- [21] Schu, j., Weak and strong convergence to fixed of asymptotically nonexpansive mappings, Bull. Australian Math. Soc. 43 (1991), pp. 153-159.10.1017/S0004972700028884
- [22] Tan, K.K. and Xu, H.K., Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (2011), pp. 733-739.10.1090/S0002-9939-1994-1203993-5
- [23] Xu, H.K., Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. Theory Methods Appl. 16 (1991), pp. 1139-1146.10.1016/0362-546X(91)90201-B
- [24] Zhang, J. and Cui, Y., Existence and convergence of fixed points for mappings of asymptotically nonexpansive type in uniformly convex W-hyperbolic spaces, Fixed Point Theory Appl. (2011).10.1186/1687-1812-2011-39