Have a personal or library account? Click to login
Algorithmic Aspects of Some Variants of Domination in Graphs Cover

References

  1. [1] A.A. Bertossi, Dominating sets for split and bipartite graphs. Information Processing Letters, 19 (1984), no. 1, pp.37-40.10.1016/0020-0190(84)90126-1
  2. [2] M. Chlebík and J. Chlebíkov, The complexity of combinatorial optimization problems on d-dimensional boxes. SIAM Journal on Discrete Mathematics, 21 (2007), no. 1, pp.158-169.10.1137/050629276
  3. [3] E.J. Cockayne, P.J.P. Grobler, W.R. Grundlingh, J. Munganga, and J.H. van Vuuren, Protection of a graph, Utilitas Mathematica, 67 (2005), pp. 19-32.
  4. [4] D.G. Corneil, and Y. Perl, Clustering and domination in perfect graphs, Discrete Applied Mathematics, 9 (1984), pp. 27-39.10.1016/0166-218X(84)90088-X
  5. [5] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inform. and Comp. 85(1) (1990) 64-75.10.1016/0890-5401(90)90043-H
  6. [6] A.P. De Villiers, Edge criticality in secure graph domination, Ph.D. Dissertation Stellenbosch: Stellenbosch University, (2014).
  7. [7] M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, (1979).
  8. [8] M.C. Golumbic, and C.F. Goss, Perfect elimination and chordal bipartite graphs, Journal of Graph Theory, 2 (1978), no. 2, pp. 155-163.10.1002/jgt.3190020209
  9. [9] I.S. Hamid, and S. Balamurugan, Isolate domination in graphs, Arab Journal of Mathematical Sciences, 22 (2016), no. 2, pp. 232-241.10.1016/j.ajmsc.2015.10.001
  10. [10] T.W. Haynes, S.T. Hedetniemi, and P. Slater, Fundamentals of domination in graphs, CRC Press, (1998).10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
  11. [11] T.W. Haynes, S.T. Hedetniemi, and P. Slater, Domination in graphs: advanced topics, Marcel Dekker, (1997).
  12. [12] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, (1972), pp. 85-103.10.1007/978-1-4684-2001-2_9
  13. [13] J.P. Kumar, P.V.S. Reddy, Algorithmic Aspects of Secure Connected Domination in Graphs, Discussiones Mathematicae Graph Theory (Article in press).
  14. [14] N.V. Mahadev, and U.N. Peled, Threshold graphs and related topics, 56, North Holland, (1995).
  15. [15] H.B. Merouane, and M. Chellali, On secure domination in graphs, Information Processing Letters, 1150 (2015), pp. 786-790.10.1016/j.ipl.2015.05.006
  16. [16] B.S. Panda, Arti Pandey, and S. Paul, Algorithmic aspects of b-disjunctive domination in graphs, Journal of Combinatorial Optimization, 36 (2018), pp. 572-590.10.1007/s10878-017-0112-6
  17. [17] D. Pradhan, A. Jha, On computing a minimum secure dominating set in block graphs, Journal of Combinatorial Optimization, 35 (2018), no. 2, pp. 613-631.10.1007/s10878-017-0197-y
  18. [18] N.J. Rad, Some notes on the isolate domination in graphs, AKCE International Journal of Graphs and Combinatorics, 14 (2017), no. 2, pp. 112-117.10.1016/j.akcej.2017.01.003
DOI: https://doi.org/10.2478/auom-2020-0039 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 153 - 170
Submitted on: Jul 24, 2019
Accepted on: Jan 9, 2020
Published on: Dec 28, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 J. Pavan Kumar, P.Venkata Subba Reddy, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.