References
- [1] Abbott JC. Semi-boolean algebra. Matematički Vesnik 1967; 40: 177-198.
- [2] Abbott JC. Implicational algebras. Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie 1967; 11 (59): 3-23.
- [3] Chajda I, Halaš R. An implication in orthologic. International Journal of Theoretical Physics 2005; 44: 735-744.10.1007/s10773-005-7051-1
- [4] Chajda I. Orthomodular semilattices. Discrete Mathematics 2007; 307 (1): 115–118.10.1016/j.disc.2006.05.040
- [5] Chajda I, Halaš R, Länger H. Orthomodular implication algebras. International Journal of Theoretical Physics 2001; 40: 1875-1884.10.1023/A:1011933018776
- [6] Chajda I, Halaš R, Länger H. Operations and structures derived from non-associative MV-algebras. Soft Computing 2018; 1–10. https://doi.org/10.1007/s00500-018-3309-410.1007/s00500-018-3309-4650051131123427
- [7] Chajda I, Emanovský P. Bounded lattices with antitone involutions and properties of MV-algebras. Discussiones Mathematicae, General Algebra and Applications 2004; 24: 32-42.10.7151/dmgaa.1073
- [8] Chajda I. Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carolin 2003; 44: 577-585.
- [9] Chajda I, Kühr J. Basic algebras. Clone Theory and Discrete Mathematics Algebra and Logic Related to Computer Science; 2013.
- [10] Chajda I. Basic algebras and their applications, an overview. Proceedings of the Salzburg Conference, Verlag Johannes Heyn, Klagenfurt 2011.
- [11] Chajda I, Halaš R, Kühr J. Many-valued quantum algebras. Algebra Universalis 2009; 60: 63-90.10.1007/s00012-008-2086-9
- [12] Chajda I, Kühr J. Ideals and Congruences of basic algebras. Soft Computing 2013; 17: 1030-1039.10.1007/s00500-012-0915-4
- [13] Chajda I. Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium Mathematica 2005; 44: 19–23.
- [14] Chajda I., Basic algebras, logics, trends and applications, Asian-European Journal of Mathematics 2015; 8.10.1142/S1793557115500400
- [15] Cignoli RL, d’Ottaviano IM, Mundici D. Algebraic foundations of many-valued reasoning. Springer Science and Business Media, 2013.
- [16] Grätzer G. General Lattice Theory. Springer Science and Business Media, 2002.
- [17] McCune W, Verof R, Fitelson B, Harris K, Feist A, Wos L, Short single axioms for Boolean algebra. Journal of Automated Reasoning 2002; 29: 1-16.10.1023/A:1020542009983
- [18] Oner T, Senturk I. The Sheffer stroke operation reducts of basic algebras. Open Mathematics 2017, 15(1): 926-935.10.1515/math-2017-0075
- [19] Sheffer HM. A set of five independent postulates for Boolean algebras, with application to logical constants. Transactions of the American Mathematical Society 1913; 14: 481-488.10.1090/S0002-9947-1913-1500960-1
- [20] Tarski A. Ein beitrag zur axiomatik der abelschen gruppen. Fundamenta Mathematicae 1938, 30: 253-256.10.4064/fm-30-1-253-256