References
- [1] B.Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc. 141(2013), 1029–1039.10.1090/S0002-9939-2012-11743-5
- [2] B. Ahmadi Kakavandi and M. Amini, Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. 73(2010), 3450–3455.10.1016/j.na.2010.07.033
- [3] M. Bačák, Convex Analysis and Optimization in Hadamard Spaces, Walter de Gruyter, Berlin, (2014).10.1515/9783110361629
- [4] M.Bačák, Old and new challenges in Hadamard spaces, arXiv:1807.01355.
- [5] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Second Edition, Springer, (2017).10.1007/978-3-319-48311-5_2
- [6] I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Aleksanderov spaces, Geom. Dedicata. 133(2008), 195–218.10.1007/s10711-008-9243-3
- [7] J.M.Borwein, Fifty years of maximal monotonicity, Optim. Lett. 4(2010), 473–490.10.1007/s11590-010-0178-x
- [8] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundelhern Math. Wiss., Springer, (1999).10.1007/978-3-662-12494-9
- [9] R. S. Burachik and B. F. Svaiter, Maximal monotone operators, convex functions and a special family of enlargements, Set-Valued Anal. 10(2002), 297–316.10.1023/A:1020639314056
- [10] P.Chaipunya and P.Kumam, On the proximal point method in Hadamard spaces, Optimization 66(2017), 1647–1665.10.1080/02331934.2017.1349124
- [11] Ş. Cobzaş, R. Miculescu and A. Nicolae, Lipschitz Functions, Springer, (2019).10.1007/978-3-030-16489-8
- [12] L. M. Elias and J.-E. Martinez-Legaz, A generalization of the strong Fitzpatrick inequality, Optimization 66(6)(2017), 917–923.10.1080/02331934.2016.1179738
- [13] S. Fitzpatrick, Representing monotone operators by convex functions, n Workshop and Miniconference on Functional Analysis and Optimization (Canberra, 1988), (Austral. Nat. Univ., Canberra, 1988) 59–65.
- [14] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aust. Math. Soc. 103(2017), 70–90.10.1017/S1446788716000446
- [15] E. Krauss, A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions, Nonlinear Anal. 9(12)(1985), 1381–1399.10.1016/0362-546X(85)90097-5
- [16] E. Krauss, A representation of maximal monotone operators by saddle functions, Rev. Roumaine Math. Pures Appl. 30(10)(1985), 823–837.
- [17] E. Krauss, Maximal monotone operators and saddle functions, I. Z. Anal. Anwendungen, 5(4)(1986), 333–346.10.4171/ZAA/202
- [18] J.-E. Martinez-Legaz and B. F. Svaiter, Monotone operators representable by l.s.c. functions, Set-Valued Anal. 13(2005), 21–46.10.1007/s11228-004-4170-4
- [19] J.-E. Martinez-Legaz and M. Théra, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal. 2(2001), 243–247.
- [20] A. Moslemipour and M. Roohi, Monotone relations in Hadamard spaces, arXiv:1906.00396.
- [21] A. Moslemipour and M. Roohi, Monotonicity of sets in Hadamard spaces from polarity point of view, arXiv:1909.01376.
- [22] M.Movahedi, D.Behmardi and M.Soleimani-Damaneh, On subdifferential in Hadamard spaces, Bull. Iranian Math. Soc. 42(2016), 707–717.
- [23] A. Papadopoulos, Metric Spaces, Convexity and Non-positive Curvature, European Matimatical Society, (2014).10.4171/132
- [24] G. Zamani Eskandani and M. Raeisi, On the zero point problem of monotone operators in Hadamard spaces, Numer. Algor. 80(2019), 1155–1179.10.1007/s11075-018-0521-3